a, x^2+2xy+7x+7y+y^2+10
b, A=(a+1)(a+3)(a+5)(a+7)+15
Phân tích các đa thức sau thành nhân tử :
a) 3x2 – 7x + 2;
b) a(x2 + 1) – x(a2 + 1).;
c)(x+2)(x+3)(x+4)(x+5)-24;
d)(a+1)(a+3)(a+5)(a+7)+15;
e)x2 + 2xy + 7x + 7y + y2 + 10
(x2 là x bình,y 2 là y bình,a2 là a bình nha)
Giúp mình với:33
a) 3x2 – 7x + 2
\(=3x^2-6x-x+2\)
\(=\left(3x^2-6x\right)-\left(x-2\right)\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) a(x2 + 1) – x(a2 + 1)
\(=ax^2+a-\left(a^2x+x\right)\)
\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)
.......?
a) Ta có: \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=x^2a+a-a^2x-x\)
\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)
\(=xa\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(xa-1\right)\)
c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)
\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)
\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)
\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)
\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)
d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)
\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)
\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
Phân tích đa thức thành nhân tử
a. \(x^2+2xy+7x+7y+y^2+10\)
b. \(A=(a+1)(a+3)(a+5)(a+7)+15\)
c . \(x^5+x+1\)
GIÚP MÌNH VỚI CÂU NÀO CŨNG ĐƯỢC Ạ !!
MÌNH ĐANG CẦN GẤP !!
b, A=[(a+1)(a+7)][(a+3)(a+5)]+15
=>A=(a2+8a+7)(a2+8a+15)+15
Đặt a2+8a+11= t
=>a2+8a+7= t-4 và a2+8a+15= t+4
=>A=(t-4)(t+4)+15
=>A=t2-16+15
=t2-1=(t-1)(t+1)
Thay t = a2+8a+11
=>A=(a2+8a+11-1)(a2+8a+11+1)
=>A=(a2+8a+10)(a2+8a+12)
a) \(x^2+2xy+7x+7y+y^2+10\)
\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)
\(=\left(x+y-2\right)\left(x+y+5\right)\)
c,=(X5 - X2)+(X2 +X+1)
=X2(X3-1)+(X2+X+1)
=X2(X-1)(X2+X+1)+(X2+X+1)
=(X3-X2+1)(X2+X+1)
1. Cho các đơn thức: A= 3/2 * x ^ 3 * y ^ 2 .(-8x^ 5 y^ 6 ), B=2xy^ 5 . (- 7x ^ 7 * y ^ 3)
a) Xác định phần hệ số, phần biến của các đơn thức trên.
b) Tính A + B
2. Cho hai đa thức : A = 2x ^ 2 - 6xy + 4y ^ 2 B = - 5x ^ 2 + 4xy + 7y ^ 2
Tính giá trị của đa thức C = A - B tại x = 1, y = 1/2
3. Cho a, b, c thỏa mãn a + b + c = 0 . Chứng minh rằng : ab + 2bc + 3ca <= 0
Bài 2:
C=A-B
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=7x^2-10xy-3y^2\)
\(=7\cdot1^2-10\cdot1\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4}=7-5-\dfrac{3}{4}=2-\dfrac{3}{4}=\dfrac{5}{4}\)
Bài 1 :
a. Cho x + y = 4 và x^2 + y^2 = 10 . Tính x^3 + y^3
b . Cho x - y = 4 và x^2 + y^2 = 58 . Tính x^3 - y^3
Bài 2 :
Cho x + y = 10 . Tính giá trị của các biểu thức :
a. A = 5x^2 - 7x + 5y^2 - 7y + 10xy - 112
b. B = x^3 + y^3 - 3x^2 - 2y^2 + 2xy(x+y ) - 6xy - 5(x+y)
Trả lời:
7, 5( x + y )2 + 15( x + y )
= 5( x + y )( x + y + 3 )
9, 7x( y - 4 )2 - ( 4 - y )3
= 7x ( 4 - y )2 - ( 4 - y )
= ( 4 - y )2 ( 7x - 4 + y )
11, ( x + 1 )( y - 2 ) - ( 2 - y )2
= ( x + 1 )( y - 2 ) - ( y - 2 )2
= ( y - 2 )( x + 1 - y + 2 )
= ( y - 2 )( x - y + 3 )
8, 9x ( x - y ) - 10 ( y - x )2
= 9x ( x - y ) - 10 ( x - y )2
= ( x - y )[ ( 9x - 10 ( x - y ) ]
= ( x - y )( 9x - 10x + 10y )
= ( x - y )( 10y - x )
10, ( a - b )2 - ( a + b )( b - a )
= ( b - a )2 - ( a + b )( b - a )
= ( b - a )( b - a - a - b )
= - 2a( b - a )
= 2a ( a - b )
12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )
= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )
= ( x - 3 )( 2x + y - 1 )
Phân tích đa thức thành nhân tử
1. x^2+2xy-8y^2+2xz+14yxz-3z^2
2. 3x^2-22xy-4x+8y+7y^2+1
3. x^4-13x^2-36
4. x^4+3X^2-2x+3
5. x^7+x^2+1
6. x^8+x+1
7. x^8+x^7+1
8. x^10+x^5+1
9. x^2+8x+7
10. (a+b+c)^2+(a+b-c)^2-4c^2
11. (a-b)^3+(b-c)^3+(c-a)^3
12. x^4-6x^3+7x^2+6x-8
Làm ơn làm nhanh giúp mình đang cần gấp lắm
Câu 15. Kết quả phân tích đa thức 6x 2 + 6xy + 7x + 7y thành nhân tử là :
A. (7x+y)(5x+y)
B. ( 3x +5 ) (x+y)
C. ( x+y ) ( 6x + 7)
D. ( 7x +6)( x + y)
cho x,y thỏa mãn \(x^2+2y^2+2xy+7x+7y+10=0...\).Tìm GTLN, GTNN của biểu thức A = x+y+1
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4
a)phân tích thành nhân tử: x^2 +2xy +7x+ 7y+ y^2+10
b)biết xy =11 va2x^2y+xy^2 +x+y=2010 hãy tính x^2 +y^2