Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:21

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:27

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
24 tháng 11 2019 lúc 18:31

Từ phần này trở đi mới bắt đầu xài nguyên hàm từng phần:

g/ \(I=\int\left(x^2+2x-1\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=x^2+2x-1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+2\right)dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+2x-1\right)e^x-\int\left(2x+2\right)e^xdx\)

Xét \(J=\int\left(2x+2\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=2x+2\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow J=\left(2x+2\right)e^x-\int2e^xdx=\left(2x+2\right)e^x-2e^x+C=2x.e^x+C\)

\(\Rightarrow I=\left(x^2+2x-1\right)e^x-2x.e^x+C=\left(x^2-1\right)e^x+C\)

Khách vãng lai đã xóa
Phan thu trang
Xem chi tiết
Phan thu trang
20 tháng 1 2017 lúc 22:31

lm jup mk di m.n

Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2021 lúc 18:23

a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)

b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)

Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)

\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)

\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)

c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)

d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)

e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)

Sách Giáo Khoa
Xem chi tiết
Akai Haruma
9 tháng 7 2017 lúc 0:38

a)

Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)

\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)

\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)

b)

\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)

Đặt \(u=\sqrt{x^2+1}\). Khi đó:

\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)

c)

\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)

\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)

Akai Haruma
10 tháng 7 2017 lúc 1:18

d)

\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)

e)

Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)

\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)

Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)

\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)

Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)

\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)

Akai Haruma
10 tháng 7 2017 lúc 2:30

g)

\(I_6=\int x\ln \left ( \frac{x}{x+1} \right )dx=\int x\ln xdx-\int x\ln (x+1)dx\)

Đặt \(\left\{\begin{matrix} u=\ln x\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x}\\ v=\frac{x^2}{2}\end{matrix}\right.\Rightarrow \int x\ln xdx=\frac{x^2\ln x}{2}-\int \frac{xdx}{2}\)

\(\Leftrightarrow \int x\ln xdx=\frac{x^2\ln x}{2}-\frac{x^2}{4}+c\)

Tương tự, \(\int x\ln (x+1)dx=\frac{x^2\ln (x+1)}{2}-\int \frac{x^2}{2(x+1)}dx\)

\(=\frac{x^2\ln (x+1)}{2}-\frac{x^2}{4}+\frac{x}{2}-\frac{\ln (x+1)}{2}+c\)

Suy ra \(I_5=\frac{x^2}{2}\ln \frac{x}{x+1}+\frac{1}{2}\ln|x+1|-\frac{x}{2}+c\)

Thái Nguyên
Xem chi tiết
Akai Haruma
28 tháng 12 2016 lúc 20:50

Câu 1:Gọi biểu thức là $A$. Đặt \(\sqrt{e^x-1}=t\)

\(\Rightarrow e^x=t^2+1\Rightarrow d(e^x)=d(t^2+1)=2tdt=e^xdx=(t^2+1)dx\)

\(\Rightarrow \int \frac{2t^2}{t^2+1}dt=\int \left (2-\frac{2}{t^2+1} \right)dt\)

Đặt \(t=\tan m\Rightarrow dt=\frac{dm}{\cos^2 m}\Rightarrow \int \frac{2dt}{t^2+1}=\int 2dm=2m\)

\(\Rightarrow A=2t-2m+c=2\sqrt{e^x-1}-2\tan ^{-1} (\sqrt{e^x-1})+c\)

Câu 2: Đặt \(x=\tan t\Rightarrow dx=\frac{dt}{\cos^2 t}, x^2+1=\frac{1}{\cos^2 t}\) với \(\frac{-\pi}{2} < t< \frac{\pi}{2}\)

Gọi biểu thức là $B$. Ta có

\(B=\int \frac{\cos t dt}{\sin ^4t}=\int \frac{d(\sin t)}{\sin^4 t}=\frac{-\sin ^{-3} t}{3}+c\) \(=-\frac{\sqrt{(x^2+1)^3}}{3x^3}+c\)

Sách Giáo Khoa
Xem chi tiết
Hai Binh
11 tháng 4 2017 lúc 18:42

Giải bài 4 trang 126 sgk Giải tích 12 | Để học tốt Toán 12

Quyên Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2020 lúc 13:59

a.

\(I=\int\frac{\frac{1}{2}\left(2x-2\right)+7}{\sqrt{x^2-2x+10}}dx=\frac{1}{2}\int\frac{2x-2}{\sqrt{x^2-2x+10}}dx+7\int\frac{1}{\sqrt{x^2-2x+10}}dx=\frac{1}{2}I_1+7I_2\)

Xét \(I_1=\int\frac{2x-2}{\sqrt{x^2-2x+10}}dx=\int\frac{d\left(x^2-2x+10\right)}{\sqrt{x^2-2x+10}}=2\sqrt{x^2-2x+10}+C_1\)

Xét \(I_2=\int\frac{dx}{\sqrt{x^2-2x+10}}=\int\frac{dx}{\sqrt{\left(x-1\right)^2+9}}\)

Đặt

\(u=x-1+\sqrt{\left(x-1\right)^2+10}\Rightarrow du=\left(1+\frac{\left(x-1\right)}{\sqrt{\left(x-1\right)^2+10}}\right)dx=\frac{x-1+\sqrt{\left(x-1\right)^2+10}}{\sqrt{\left(x-1\right)^2+10}}dx\)

\(\Rightarrow du=\frac{u}{\sqrt{\left(x-1\right)^2+10}}dx\Rightarrow\frac{dx}{\sqrt{\left(x-1\right)^2+10}}=\frac{du}{u}\)

\(\Rightarrow I_2=\int\frac{du}{u}=ln\left|u\right|+C_2=ln\left|x-1+\sqrt{x^2-2x+10}\right|+C_2\)

\(\Rightarrow I=\sqrt{x^2-2x+10}+7ln\left|x-1+\sqrt{x^2-2x+10}\right|+C\)

Nguyễn Việt Lâm
26 tháng 8 2020 lúc 14:05

2.

\(I=\int\frac{\frac{1}{2}\left(2x+2\right)-1}{\sqrt{3-2x-x^2}}dx=\frac{1}{2}\int\frac{2x+2}{\sqrt{3-2x-x^2}}dx-\int\frac{1}{\sqrt{3-2x-x^2}}dx=\frac{1}{2}I_1-I_2\)

Xét \(I_1=\int\frac{2x+2}{\sqrt{3-2x-x^2}}dx=-\int\frac{d\left(3-2x-x^2\right)}{\sqrt{3-2x-x^2}}=-2\sqrt{3-2x-x^2}+C_1\)

Xét \(I_2=\int\frac{1}{\sqrt{3-2x-x^2}}dx=\int\frac{1}{\sqrt{4-\left(x+1\right)^2}}dx\)

Đặt \(x+1=2sinu\Rightarrow dx=2cosu.du\)

\(\Rightarrow I_2=\int\frac{2cosu.du}{2.cosu}=\int du=u+C_2=arcsin\left(\frac{x+1}{2}\right)+C_2\)

\(\Rightarrow I=-\sqrt{3-2x-x^2}-arcsin\left(\frac{x+1}{2}\right)+C\)

Nguyễn Việt Lâm
26 tháng 8 2020 lúc 14:38

c/

\(I=\int\frac{1-\sqrt{x}}{\sqrt{1-x}}dx\)

Đặt \(\sqrt{x}=sint\Rightarrow x=sin^2t\Rightarrow dx=2sint.cost.dt\)

\(\Rightarrow I=\int\frac{2sint.cost\left(1-sint\right)}{\sqrt{1-sin^2t}}dt=\int\frac{2sint.cost\left(1-sint\right)}{cost}dt=\int\left(2sint-2sin^2t\right)dt\)

\(=\int\left(2sint+cos2t-1\right)dt=-2cost+\frac{1}{2}sin2t-t+C\)

\(=-2\sqrt{1-sin^2t}+\frac{1}{2}sint\sqrt{1-sin^2t}-t+C\)

\(=-2\sqrt{1-x}+\frac{1}{2}\sqrt{x\left(1-x\right)}-arcsin\left(\sqrt{x}\right)+C\)

Bắc Băng Dương
Xem chi tiết
Đỗ Hạnh Quyên
18 tháng 3 2016 lúc 21:49

a) Đặt \(1+\ln x=t\)  khi đó \(\frac{dx}{x}=dt\)  và do đó 

\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)

 

b) Đặt \(\sqrt[4]{e^x+1}=t\)  khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\)  , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\) 

Do đó :

\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)

    \(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)

 

c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :

\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)

 

Trương Thị Quỳnh
29 tháng 9 2017 lúc 15:49

C

Nguyễn Minh Ngọc
8 tháng 10 2017 lúc 19:49

8 hệ

kiếp đỏ đen
Xem chi tiết