mng giúp mik nha,gấp lắm lunn í =(((
Cho x,y thỏa mãn x2+y2<=2x+2y. Tìm GTLN của
a) P=x+y
b)P=3x+4y
Cho x,y là 2 đại lượng tỉ lệ thuận ; x1,x2,x3 là 3 giá trị khác nhau của x với x1-x2=3(x3-x2+672)
y1,y2,y3 là 3 giá trị tương ứng của y thỏa y2+y3=y1+5(y2-403) / 3
Viết công thức liên hệ x và y.
MẤY BẠN GIẢI GIÚP MIK NHANH NHÉ MIK ĐG CẦN GẤP LẮM !!!
Giúp mình với mình đang cần gấp !
Cho x,y là các số thực thỏa mãn : \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2=1
Giúp mình với mình đang cần gấp !
Cho x,y là các số thực thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR : x2+y2=1
Ta có:
\(x\sqrt{1-y^2}+y.\sqrt{1-x^2}\le\dfrac{1}{2}\left(x^2+1-y^2\right)+\dfrac{1}{2}\left(y^2+1-x^2\right)=1\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{1-x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=1\) (đpcm)
Giúp với, gấp lắm rồi
Cho x là số tự nhiên
a) Chứng minh rằng x2 + x + 1 không chia hết cho 9
b) Tìm các số tự nhiên x, y thỏa mãn x2 + x + 1 = 3y
a) Ta đặt \(P\left(x\right)=x^2+x+1\)
\(P\left(x\right)=x^2+x-20+21\)
\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)
Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\) nên \(\left(x+5\right)\left(x-4\right)⋮3\).
Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)
Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)
b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)
Nếu \(y=0\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)
a) Ta đặt
�
(
�
)
=
�
2
+
�
+
1
P(x)=x
2
+x+1
�
(
�
)
=
�
2
+
�
−
20
+
21
P(x)=x
2
+x−20+21
�
(
�
)
=
(
�
+
5
)
(
�
−
4
)
+
21
P(x)=(x+5)(x−4)+21
Giả sử tồn tại số tự nhiên
�
x mà
�
(
�
)
⋮
9
P(x)⋮9
⇒
�
(
�
)
⋮
3
⇒P(x)⋮3. Do
21
⋮
3
21⋮3 nên
(
�
+
5
)
(
�
−
4
)
⋮
3
(x+5)(x−4)⋮3.
Mà 3 là số nguyên tố nên suy ra
[
�
+
5
⋮
3
�
−
4
⋮
3
x+5⋮3
x−4⋮3
Nếu
�
+
5
⋮
3
x+5⋮3 thì suy ra
�
−
4
=
(
�
+
5
)
−
9
⋮
3
x−4=(x+5)−9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Nếu
�
−
4
⋮
3
x−4⋮3 thì suy ra
�
+
5
=
(
�
−
4
)
+
9
⋮
3
x+5=(x−4)+9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9
b) Vì x^2+x+1⋮̸9 nên
�
≤
1
⇒
�
∈
{
0
;
1
}
y≤1⇒y∈{0;1}
Nếu
�
=
0
⇒
�
2
+
�
+
1
=
1
y=0⇒x
2
+x+1=1
⇔
�
(
�
+
1
)
=
0
⇔x(x+1)=0
⇔
[
�
=
0
(
�
ℎ
ậ
�
)
�
=
−
1
(
�
�
ạ
�
)
⇔[
x=0(nhận)
x=−1(loại)
Nếu
�
=
1
y=1
⇒
�
2
+
�
+
1
=
3
⇒x
2
+x+1=3
⇔
�
2
+
�
−
2
=
0
⇔x
2
+x−2=0
⇔
(
�
−
1
)
(
�
+
2
)
=
0
⇔(x−1)(x+2)=0
⇔
[
�
=
1
(
�
ℎ
ậ
�
)
�
=
−
2
(
�
�
ạ
�
)
⇔[
x=1(nhận)
x=−2(loại)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)
tìm x và y thỏa mãn 2xy - x - y = 2 . giúp mik nha mik đag cần gấp
\(2xy-x-y=2\\ \Rightarrow x\left(2y-1\right)-y=2\\ \Rightarrow2x\left(2y-1\right)-2y+1=4+1\\ \Rightarrow2x\left(2y-1\right)-\left(2y-1\right)=5\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=5\)
Ta có bảng:
2x-1 | -5 | -1 | 1 | 5 |
2y-1 | -1 | -5 | 5 | 1 |
x | -2 | 0 | 1 | 3 |
y | 0 | -2 | 3 | 1 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;0\right);\left(0;-2\right);\left(1;3\right);\left(3;1\right)\right\}\)
a) Để phương trình \(x^2-2m^2x+3m=0\) có nghiệm x=3 thì
Thay x=3 vào phương trình \(x^2-2m^2x+3m=0\), ta được:
\(3^2-2\cdot m^2\cdot3+3m=0\)
\(\Leftrightarrow-6m^2+3m+9=0\)
\(\Leftrightarrow-6m^2-6m+9m+9=0\)
\(\Leftrightarrow-6m\left(m+1\right)+9\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(-6m+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\-6m+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\-6m=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: Khi \(m\in\left\{-1;\dfrac{3}{2}\right\}\) thì phương trình có nghiệm là x=3
b) Để phương trình có nghiệm là x=2 thì
Thay x=2 vào phương trình \(x^2-2m^2x+3m=0\), ta được:
\(2^2-2m^2\cdot2+3m=0\)
\(\Leftrightarrow-4m^2+3m+4=0\)
\(\Leftrightarrow-\left(4m^2-3m-4\right)=0\)
\(\Leftrightarrow-\left(4m^2-2\cdot2m\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{73}{16}\right)=0\)
\(\Leftrightarrow-\left(2m-\dfrac{3}{4}\right)^2+\dfrac{73}{16}=0\)(vô lý)
Vậy: Không có giá trị nào của m để phương trình \(x^2-2m^2x+3m=0\) có nghiệm là x=2
Cái này thì bạn cứ thế x hoặc m vào giải ra thui là được mà :v
\(x^2-2m2x+3m=0\left(1\right)\)
a) Thay x = 3 vào PT (1) ta có:
\(3^2-2m.2.3+3.m=0\)
\(\rightarrow\) \(9-12m+3m=0\)
\(\rightarrow\) \(9-9m=0\)
\(\rightarrow m=1\)
b) Thay x = 2 vào PT (1) ta có :
\(2^2+2m.2.2+3m=0\)
\(\rightarrow4-8m+3m=0\)
\(\rightarrow4-5m=0\)
\(\rightarrow m=\dfrac{4}{5}\)
tìm x,y thỏa mãn
(2x+1)^2008+/3y-1/^2007=0
Giúp mik vs các bạn. Mik cần gấp lắm
Ta có: \(\hept{\begin{cases}\left(2x+1\right)^{2008}\ge0\forall x\\|3y-1|^{2007}\ge0\forall y\end{cases}}\)\(\Rightarrow\left(2x+1\right)^{2008}+|3y-1|^{2007}\ge0\forall x,y\)
Do đó \(\left(2x+1\right)^{2008}+|3y-1|^{2007}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=0\\3y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}\)
Tìm tất cả giá trị x,y nguyên thỏa mãn: 16 - 3(y - 3)2 = (2023-x)2
Giúp mik vs mng oiiiiiiii
Lời giải:
Do $(2023-x)^2\geq 0$ với mọi $x$ nên:
$3(y-3)^2=16-(2023-x)^2\leq 16<18$
$\Rightarrow (y-3)^2< 6$
Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.
$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$
Nếu $(y-3)^2=0$ thì $y=3$.
Khi đó: $(2023-x)^2=16-3.0^2=16$
$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$
$\Rightarrow x=2019$ hoặc $x=2027$
Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$
$\Rightarrow y=5$ hoặc $y=1$
Khi đó:
$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$
$\Rightarrow x=2021$ hoặc $x=2025$
Giúp mình giải bài này nha
Cho x, y, z ≠0 và (y2+z2−x2)/2yz +(z2+x2−y2)/2xz +
(x2+y2−z2)/2xy =1. Chứng minh rằng trong ba phân thức đã cho có một phân thức bằng 1 và một phân thức bằng -1.
Nhanh lên nhé Mình cần gấp lắm😢