Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2021 lúc 13:54

a) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ

nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(A=\dfrac{x-4}{\sqrt{x}+2}\), ta được:

\(A=\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\left(\dfrac{1}{4}-\dfrac{16}{4}\right):\left(\dfrac{1}{2}+2\right)=\dfrac{-15}{4}:\dfrac{5}{2}\)

\(\Leftrightarrow A=\dfrac{-15}{4}\cdot\dfrac{2}{5}=\dfrac{-30}{20}=\dfrac{-3}{2}\)

Vậy: Khi \(x=\dfrac{1}{4}\) thì \(A=\dfrac{-3}{2}\)

b) Ta có: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-1}{2-\sqrt{x}}-\dfrac{9-x}{4-x}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2+x+2\sqrt{x}-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x-4+9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

Thanh Hoàng Thanh
27 tháng 1 2021 lúc 13:51

Thay x = \(\dfrac{1}{4}\)vào bt A ta có: A= \(\dfrac{\dfrac{1}{4}-4}{\sqrt{\dfrac{1}{4}}+2}=\dfrac{-15}{4}:\dfrac{5}{2}=\dfrac{-3}{2}\)

Vậy x = \(\dfrac{1}{4}\)vào bt A nhận giá trị là -3/2

b)

Lưu huỳnh ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 21:42

a: \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}=\dfrac{x^2+4x+4}{3x+6}=\dfrac{x+2}{3}\)

b: \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)

\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}\)

=0

Buddy
Xem chi tiết
Thảo Nguyễn
23 tháng 7 2023 lúc 16:49

\(a,\dfrac{8y}{3x^2}.\dfrac{9x^2}{4y^2}=\dfrac{72x^2y}{12x^2y^2}=\dfrac{6}{y}\\b,\dfrac{3x+x^2}{x^2+x+1}.\dfrac{3x^3-3}{x+3}=\dfrac{x\left(x+3\right)3\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x+3\right)}=3x\left(x-1\right)=3x^2-3x \)

\(c,\dfrac{2x^2+4}{x-3}.\dfrac{3x+1}{x-1}.\dfrac{6-2x}{x^2+2}=\dfrac{2\left(x^2+2\right)\left(3x+1\right)2\left(3-x\right)}{\left(x-3\right)\left(x-1\right)\left(x^2+2\right)}=\dfrac{-4\left(3x+1\right)}{x-1}=\dfrac{-12x-4}{x-1}\)

\(d,\dfrac{2x^2}{3y^3}:\left(-\dfrac{4x^3}{21y^2}\right)=\dfrac{-2x^2.21y^2}{3y^3.4x^3}=\dfrac{-42x^2y^2}{12x^3y^3}=\dfrac{-7}{2xy}\)

\(e,\dfrac{2x+10}{x^3-64}:\dfrac{\left(x+5\right)^2}{2x-8}=\dfrac{2\left(x+5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}.\dfrac{2\left(x-4\right)}{\left(x+5\right)^2}=\dfrac{4}{\left(x+5\right)\left(x^2+4x+16\right)}=\dfrac{4}{x^3+9x^2+16x+80}\)

\(f,\dfrac{1}{x+y}\left(\dfrac{x+y}{xy}-x-y\right)-\dfrac{1}{x^2}:\dfrac{y}{x}=\dfrac{1}{x+y}\left(\dfrac{\left(x+y\right)\left(1-xy\right)}{xy}\right)-\dfrac{x}{x^2y}=\dfrac{1-xy}{xy}-\dfrac{x}{x^2y}=\dfrac{-x^2y}{x^2y}=-1\)

Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2021 lúc 16:39

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

Nguyễn Việt Lâm
4 tháng 1 2021 lúc 16:45

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

 

Nguyễn Việt Lâm
7 tháng 1 2021 lúc 21:50

Nếu câu 3 đề là \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

Ta có:

\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{16xy}{\left(x-y\right)^2}=\dfrac{x^2+y^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)

\(VT=\dfrac{x^2+y^2-2xy+2xy}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)

\(VT=\dfrac{\left(x-y\right)^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+4\ge2\sqrt{\dfrac{16xy\left(x-y\right)^2}{xy\left(x-y\right)^2}}+4=12\)

phamthiminhanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 12:47

a) Ta có: \(B=\left(\dfrac{x}{3x-9}+\dfrac{2x-3}{3x-x^2}\right)\cdot\dfrac{3x^2-9x}{x^2+6x+9}\)

\(=\left(\dfrac{x}{3\left(x-3\right)}-\dfrac{2x-3}{x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)

\(=\left(\dfrac{x^2}{3x\left(x-3\right)}-\dfrac{3\left(2x-3\right)}{3x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x^2-6x+9}{3x\left(x-3\right)}\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x^2-6x+9}{x^2+6x+9}\)

b) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{1}{x+2}\)

\(=\left(\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{x+2}\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)

\(=\dfrac{-6}{x-2}\)

Khiêm Nguyễn Gia
Xem chi tiết
Phương Anh
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 10:25

\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)

Lê Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2021 lúc 21:07

a)\(x\in R\)

b)\(x\ne1\)

c) \(x\notin\left\{1;2\right\}\)

d) \(x\notin\left\{3;-3\right\}\)

e) \(x\ne1\)

f) \(x\notin\left\{2;3\right\}\)

Hồng Nhan
1 tháng 3 2021 lúc 18:24

a) x∈R

b) x≠1

c) x∉{1;2}

d) x∉{3;−3}

e) x≠1

f) x∉{2;3}

Vân Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 18:23

a) Ta có: \(-3\dfrac{1}{4}\cdot x-75\%+\dfrac{3x}{2}=-1.2:\dfrac{-9}{10}-1\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{-13x}{4}-\dfrac{3}{4}+\dfrac{3x}{2}=\dfrac{-6}{5}\cdot\dfrac{10}{-9}-\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{-13x-3+6x}{4}=\dfrac{4}{3}-\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{-7x-3}{4}=\dfrac{1}{12}\)

\(\Leftrightarrow-7x-3=\dfrac{1}{3}\)

\(\Leftrightarrow-7x=\dfrac{10}{3}\)

hay \(x=-\dfrac{10}{21}\)

Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 21:02

b) Ta có: \(\dfrac{5}{3}+\dfrac{5}{15}+\dfrac{5}{35}+...+\dfrac{5}{x\left(x+2\right)}=2\dfrac{8}{17}\)

\(\Leftrightarrow\dfrac{5}{2}\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{x\left(x+2\right)}\right)=2\dfrac{8}{17}\)

\(\Leftrightarrow\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=2+\dfrac{8}{17}\)

\(\Leftrightarrow\left(1-\dfrac{1}{x+2}\right)=\dfrac{42}{17}:\dfrac{5}{2}\)

\(\Leftrightarrow\dfrac{x+1}{x+2}=\dfrac{42}{17}\cdot\dfrac{2}{5}=\dfrac{84}{85}\)

\(\Leftrightarrow85x+85=84x+168\)

\(\Leftrightarrow x=83\)