Tìm m để hàm số:
\(y=x^3-3mx^2+6\left(m^2-2\right)x+1\) đồng biến trên \(\left(2;+\infty\right)\)
Cho hàm số \(y=-\frac{m-1}{3}x^3+\left(m+2\right)x^2+3mx+5\), với m là tham số thực. Tìm m để hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)
Ta có \(y'=-\left(m-1\right)x^2+2\left(m+2\right)+3m\) \(\Rightarrow\) Hàm đồng biến trên khoảng \(\left(-\infty;-2\right)\Leftrightarrow y'\ge0,x\in\left(-\infty;-2\right)\)(*)
Vì y'(x) liên tục tại x = -2 nên (*) \(\Leftrightarrow y'\ge0;\)
và mọi x thuộc (-\(-\infty;2\) ] (*)
\(\Leftrightarrow-\left(m-1\right)x^2+2\left(m+2\right)x+3m\ge0\), mọi x thuộc (-\(-\infty;2\) ]
\(\Leftrightarrow m\left(-x^2+2x+3\right)\ge-x^2-4x\), mọi x thuộc (-\(-\infty;2\) ]\(\Leftrightarrow m\le g\left(x\right)\), mọi x thuộc (-\(-\infty;2\) ] (Trong đó \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\))
\(\Leftrightarrow m\le Min_{\left(-\infty;-2\right)}g\left(x\right)\)
Xét hàm số \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\) trên đoạn (-\(-\infty;2\) ]
\(\Rightarrow g'\left(x\right)=\frac{-6\left(x^2+x+2\right)}{\left(-x^2+2x+3\right)^2}=\frac{-6\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(-x^2+2x+3\right)^2}<0\),mọi x thuộc (-\(-\infty;2\) ]
\(\Rightarrow g\left(x\right)\) là hàm số nghịch biến trên (-\(-\infty;2\) ]
\(\Rightarrow Min_{\left(-\infty;-2\right)}g\left(x\right)=g\left(-2\right)=-\frac{4}{5}\)
Vậy \(m\le-\frac{4}{5}\) thì hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)
tìm m để hàm số \(y=x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m^2-m\) đồng biến trên \(\left(2;+\infty\right)\)
\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)
\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)
\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt
Bài toán thỏa mãn khi: \(x_1< x_2\le2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)
tìm các giá trị của m để hàm số sau
a) \(y=-x^3+\left(m+2\right)x^2-3x\) nghịch biến trên R
b) \(y=x^3-3x^2+\left(1-m\right)x\) đồng biến trên R
a: \(y=-x^3+\left(m+2\right)x^2-3x\)
=>\(y'=-3x^2+2\left(m+2\right)x-3\)
=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(4m^2+16m+16-4\cdot9< =0\)
=>\(4m^2+16m-20< =0\)
=>\(m^2+4m-5< =0\)
=>\(\left(m+5\right)\left(m-1\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)
=>-5<=m<=1
TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: \(y=x^3-3x^2+\left(1-m\right)x\)
=>\(y'=3x^2-3\cdot2x+1-m\)
=>\(y'=3x^2-6x+1-m\)
Để hàm số đồng biến trên R thì \(y'>=0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)
=>\(36-12\left(1-m\right)>=0\)
=>\(36-12+12m>=0\)
=>12m+24>=0
=>m+2>=0
=>m>=-2
Tìm tất cả các tham số \(m\) để hàm số \(y=\left|x^3-3x^2-\left(m^2-6m+2\right)x+m-2\right|\) đồng biến trên khoảng \(\left(0;3\right)\)
cho hàm số \(y=\left(m^2-3m+2\right).x^2+\left(m-1\right)x+3.\)( m là tham số)
a) tìm m để hàm số trên là hàm số bậc nhất
b)tìm m để hàm số trên đồng biến, nghịch biến
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
Cho hàm số: \(y=f\left(x\right)=\left(m-1\right)\left(m+2\right)x^2-3mx-4\)
a) Với giá trị nào của m thì hàm số trên là hàm số bậc nhất?
b) Với những giá trị m mà hàm số là bậc nhất thì nó đồng biến, nghịch biến?
tìm các giá trị của m để hàm số sau
a) \(y=-x^3-3x^2+\left(5-m\right)x\) nghịch biến trên R
b) \(y=x^3+\left(2m-2\right)x^2+mx\) đồng biến trên R
a: \(y=-x^3-3x^2+\left(5-m\right)x\)
=>\(y'=-3x^2-3\cdot2x+5-m\)
=>\(y'=-3x^2-6x+5-m\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)
=>\(36+12\left(5-m\right)< =0\)
=>\(36+60-12m< =0\)
=>\(-12m+96< =0\)
=>-12m<=-96
=>m>=8
b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)
=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)
=>\(y'=3x^2+\left(4m-4\right)x+m\)
Để hàm số đồng biến trên R thì y'>=0 với mọi x
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)
=>\(16m^2-32m+16-12m< =0\)
=>\(16m^2-44m+16< =0\)
=>\(4m^2-11m+4< =0\)
=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)
tìm m để hàm số \(y=\dfrac{2x^2+\left(m-1\right)x+1-m}{x-m}\) đồng biến trên \(\left(1;+\infty\right)\)
\(y'=\dfrac{2x^2-4mx-m^2+2m-1}{\left(x-m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta có:
\(\left\{{}\begin{matrix}2x^2-4mx-m^2+2m-1\ge0\left(1\right)\\m\le1\end{matrix}\right.\)
Xét (1): ta có \(\Delta'=4m^2-2\left(-m^2+2m-1\right)=6m^2-4m+2>0\) ; \(\forall m\)
\(\Rightarrow\) (1) thỏa mãn khi: \(x_1< x_2\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m^2+2m-1}{2}-2m+1\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow-1-\sqrt{2}\le m\le-1+\sqrt{2}\)
tìm m để hàm số:
a y=\(\left(\sqrt{7-m}-1\right)x+2\) đồng biến trên R
b y=\(\left(m^2+m+1\right)x-5\) nghịch biến trên R
a.
Hàm số đồng biến trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}7-m\ge0\\\sqrt{7-m}-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le7\\m< 6\end{matrix}\right.\) \(\Leftrightarrow m< 6\)
b. Để hàm nghịch biến trên R
\(\Leftrightarrow m^2+m+1< 0\)
\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}< 0\) (vô lý)
Vậy ko tồn tại m thỏa mãn yêu cầu
cảm ơn tất cả mọi người,đấy là bài cuối của tuần này rồi