\(\dfrac{6^3+2.6^2+2^3}{74}\)
Tìm giá trị biểu thức:\(\frac{6^2+2.6^2+2^3}{74}\);\(\frac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\);
Bài 1: Tính một cách hợp lí
d) (\(^{2^2}\) : \(\dfrac{4}{3}\) - \(^{\dfrac{1}{2}}\) ) x \(\dfrac{6}{5}\) - 17
h) \(\dfrac{\left(-1\right)^3}{15}\) + \(\left(-\dfrac{2}{3}\right)^2\) : \(2\dfrac{2}{3}\) - \(\left|-\dfrac{5}{6}\right|\)
k) \(\dfrac{2.6^9-2^5.18^4}{2^2.6^8}\)
n) 3 - \(\left(-\dfrac{7}{8}\right)^0\) + \(\left(\dfrac{1}{2}\right)^3\) . 16
Mg giải gấp giúp mình ạ
d: \(\left(2^2:\dfrac{4}{3}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(4\cdot\dfrac{3}{4}-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\left(3-\dfrac{1}{2}\right)\cdot\dfrac{6}{5}-17\)
\(=\dfrac{5}{6}\cdot\dfrac{6}{5}-17=1-17=-16\)
h: \(\dfrac{\left(-1\right)^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left|-\dfrac{5}{6}\right|\)
\(=-\dfrac{1}{15}+\dfrac{-8}{27}:\dfrac{8}{3}-\dfrac{5}{6}\)
\(=-\dfrac{1}{15}-\dfrac{1}{9}-\dfrac{5}{6}\)
\(=\dfrac{-6-10-75}{90}=\dfrac{-91}{90}\)
k: \(\dfrac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
\(=\dfrac{2^{10}\cdot3^9-2^5\cdot2^4\cdot3^8}{2^2\cdot2^8\cdot3^8}\)
\(=\dfrac{2^{10}\cdot3^9-2^9\cdot3^8}{2^{10}\cdot3^8}=\dfrac{2^9\cdot3^8\left(2\cdot3-1\right)}{2^{10}\cdot3^8}\)
\(=\dfrac{5}{2}\)
n: \(3-\left(-\dfrac{7}{8}\right)^0+\left(\dfrac{1}{2}\right)^3\cdot16\)
\(=3-1+\dfrac{1}{8}\cdot16\)
=2+2
=4
Tính
\(\dfrac{6^3+2.6^2+2^3}{37}\)
Giải chi tiết dùm mik nha. Thankss
\(\dfrac{6^3+2.6^2+2^3}{37}=\dfrac{2^3.3^3+2.2^2.3^2+2^3}{37}\\ \\ \\ \\ \\ \\ \\ \\ \\=\dfrac{2^3.3^3+2^3.3^2+2^3}{37}\\ \\ \\ \\ \\ \\ \\ \\ \\ =\dfrac{2^3.\left(3^3+3^2+1\right)}{37}=\dfrac{2^3.37}{37}=2^3=8\)
\(\dfrac{6^3+2.6^2+2^3}{37}=\dfrac{216+72+8}{37}=\dfrac{296}{37}=8\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1-5\right)}=\dfrac{-2}{-4}=\dfrac{1}{2}\)
Tính: A=\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(A=\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+3^8\cdot2^{10}\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=-\dfrac{2}{6}=-\dfrac{1}{3}\)
Thực hiện phép tính
\(\dfrac{27^3.11+9^5.5}{3^9.2^4}\)
\(\dfrac{5^8+2^2.25^4+2^3.125^3-15^4.5^4}{4^2.625^2}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
Giúp mik
a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)
\(=\dfrac{11+15}{16}\)
\(=\dfrac{26}{16}\)
\(=\dfrac{13}{8}\)
b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)
\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)
\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)
\(=\dfrac{1+4+40-81}{16}\)
\(=\dfrac{-36}{16}\)
\(=\dfrac{-9}{4}\)
c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=\dfrac{-2}{6}\)
\(=-\dfrac{1}{3}\)
Thực hiện phép tính \(\dfrac{4^5.9^{4^{ }}-2.6^{9^{ }}}{2^{10^{ }}.3^{8^{ }}+6^{8^{ }}.20}:\sqrt{\dfrac{25}{9}}\)
\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}:\sqrt{\dfrac{25}{9}}=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}:\dfrac{5}{3}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}.\dfrac{5}{3}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1-5\right)}.\dfrac{5}{3}=\dfrac{1-3}{1-5}.\dfrac{5}{3}=\dfrac{1}{2}.\dfrac{5}{3}=\dfrac{5}{6}\)
\(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\div\sqrt{\dfrac{25}{9}}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\div\dfrac{5}{4}\)
=\(\dfrac{2^{10}\cdot3^8\left(1-2\cdot3\right)}{2^{10}\cdot3^8\left(1+5\right)}\div\dfrac{5}{4}\)
=\(\dfrac{1-6}{1+5}\cdot\dfrac{4}{5}\)
=\(-\dfrac{5}{6}\cdot\dfrac{4}{5}\)
=\(-\dfrac{2}{3}\)
\(\dfrac{5^2.6^9.10+6^5.2^3.15^3}{5^2.6^8.10+2.6^8.10^3}\)
=> A=\(\)\(\frac{5^2.6^9.10+6^5.2^3.15^3}{5^2.6^8.10-2.6^8.10^3}=\frac{5^2.6^9.2.5+6^5.2^3.\left(3.5\right)^3}{5^2.6^8.2.5-2.6^8.\left(2.5\right)^3}\)
\(\Rightarrow A=\frac{5^3.6^9.2+6^5.2^3.3^3.5^3}{5^3.6^8.2-2.6^8.2^3.5^3}=\frac{5^3.6^9.2+\left(2.3\right)^3.5^3}{5^3.6^8.2-2^4.6^8.5^3}\)
\(\Rightarrow A=\frac{5^3.6^8.6.2+6^8.5^3}{5^3.6^8.2-2^4.6^8.5^3}=\frac{5^3.6^8.\left(6.2+1\right)}{5^3.6^8.\left(2-2^4\right)}\)
\(\Rightarrow A=\frac{6.2+1}{2-2^4}=\frac{12+1}{-14}=\frac{13}{-14}\)
\(\dfrac{5^2.6^9.10+6^5.2^3.15^3}{5^2.6^8.10-2.6^8.10^3}\)
\(=\dfrac{5^2\cdot2^9\cdot3^9\cdot2\cdot5+2^5\cdot2^3\cdot3^5\cdot5^3\cdot3^3}{5^2\cdot2^8\cdot3^8\cdot2\cdot5-2\cdot2^8\cdot3^8\cdot2^3\cdot5^3}\)
\(=\dfrac{5^3\cdot2^{10}\cdot3^9+5^3\cdot2^8\cdot3^8}{5^3\cdot2^9\cdot3^8-5^3\cdot2^{12}\cdot3^8}\)
\(=\dfrac{5^3\cdot2^8\cdot3^8\left(2^2\cdot3+1\right)}{5^3\cdot2^9\cdot3^8\left(1-2^3\cdot1\right)}=\dfrac{1}{2}\cdot\dfrac{13}{1-9}=-\dfrac{13}{16}\)