Phân tích đa thức thành nhân tử : x2 – 3x – 15
Phân tích đa thức thành nhân tử : x2 – 2xy + y2 + 3x – 3y – 10
x2-2xy+y2+3x-3y-10
= (x-y)2+3(x-y)-10
= [(x-y)2+5(x-y)]-[2(x-y)+10]
= (x-y)(x-y+5)-2(x-y+5)
= (x-y+5)(x-y-2)
Ta có: \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
Phân tích đa thức thành nhân tử : (x2 – 3x)2 – 14x2 + 42x + 40
\(\left(x^2-3x\right)^2-14x^2+42x+40\\ =\left(x^2-3x-7\right)^2-9\\ =\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(\left(x^2-3x\right)^2-14x^2+42x+40\)
\(=\left(x^2-3x-4\right)\left(x^2-3x-10\right)\)
\(=\left(x-4\right)\left(x+1\right)\left(x-5\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử : (x2 + 5x – 3)(x2 + 5x – 5) – 15
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)
\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)
\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)
\(=x\left(x+5\right)\left(x^2+5x-8\right)\)
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử : x2 - 2x - 24
\(x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x(x-6)+4(x-6)\)
\(=(x+4)(x-6)\)
\(x^2-2x-24\\ =x^2-2x+1-25\\ =\left(x-1\right)^2-5^2\\ =\left(x-1-5\right)\left(x-1+5\right)\\ =\left(x-6\right)\left(x+4\right)\)
\(x^2-2x-24=\left(x-6\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử : –x2 – 5x + 24
-x2 - 5x + 24
= -x2 + 3x - 8x + 24
= -x(x + 3) - 8(x - 3)
= (-x - 8)(x + 3)
=(3x-x2)+(24-8x)=3x(1-x)+8(1-x)=(1-x)(3x+8)
\(-x^2-5x+24\)
\(=-x^2-8x+3x+24\)
\(=\left(x+8\right)\left(-x+3\right)\)
Phân tích đa thức thành nhân tử : (1 + x2)2 – 4x(1 – x2)
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
Phân tích đa thức thành nhân tử : x2 – x – 2020*2021
\(x^2-x-2020.2021=x^2+2020x-2021x-2020.2021=x\left(x+2020\right)-2021\left(x+2020\right)=\left(x+2020\right)\left(x-2021\right)\)
\(x^2-x-2020\cdot2021\)
\(=\left(x-2021\right)\left(x+2020\right)\)
Phân tích đa thức thành nhân tử : (x2 + 6x – 5)(x2 + 6x + 3) – 20
Ta có: (x2+6x-5)(x2+6x+3)-20
= [(x2+6x-1)-4][(x2+6x-1)+4]-20
= (x2+6x-1)2-16-20
= (x2+6x-1)2-36
= (x2+6x-7)(x2+6x-5)
= (x+7)(x-1)(x2+6x-5)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)\\ =\left(x^2+6x-1\right)^2-16-20\\ =\left(x^2+6x-1\right)^2-36\\ =\left(x^2+6x-1-6\right)\left(x^2+6x-1+6\right)\\ =\left(x^2+6x-7\right)\left(x^2+6x+5\right)\\ =\left(x-1\right)\left(x+7\right)\left(x+1\right)\left(x+5\right)\)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)-20\)
\(=\left(x^2+6x\right)^2-2\left(x^2+6x\right)-35\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+5\right)\)
\(=\left(x+7\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\)