Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạt Nguyễn
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 16:07

x2-2xy+y2+3x-3y-10

= (x-y)2+3(x-y)-10

= [(x-y)2+5(x-y)]-[2(x-y)+10]

= (x-y)(x-y+5)-2(x-y+5)

= (x-y+5)(x-y-2)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 23:01

Ta có: \(x^2-2xy+y^2+3x-3y-10\)

\(=\left(x-y\right)^2+3\left(x-y\right)-10\)

\(=\left(x-y+5\right)\left(x-y-2\right)\)

Đạt Nguyễn
Xem chi tiết
loann nguyễn
4 tháng 9 2021 lúc 11:47

\(\left(x^2-3x\right)^2-14x^2+42x+40\\ =\left(x^2-3x-7\right)^2-9\\ =\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 12:53

\(\left(x^2-3x\right)^2-14x^2+42x+40\)

\(=\left(x^2-3x-4\right)\left(x^2-3x-10\right)\)

\(=\left(x-4\right)\left(x+1\right)\left(x-5\right)\left(x+2\right)\)

Đạt Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 11:56

\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15=\left(x^2+5x-3\right)\left(x^2+5x-3-2\right)-15=\left(x^2+5x-3\right)^2-2\left(x^2+5x-3\right)+1-16=\left(x^2+5x-3-1\right)^2-4^2=\left(x^2+5x-4\right)^2-4^2=\left(x^2+5x-8\right)\left(x^2+5x\right)=x\left(x+5\right)\left(x^2+5x-8\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 12:51

\(\left(x^2+5x-3\right)\left(x^2+5x-5\right)-15\)

\(=\left(x^2+5x\right)^2-8\left(x^2+5x\right)-15\)

\(=x\left(x+5\right)\left(x^2+5x-8\right)\)

Đạt Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
4 tháng 9 2021 lúc 16:16

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)

\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)

\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 22:53

Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)

Đạt Nguyễn
Xem chi tiết
弃佛入魔
2 tháng 9 2021 lúc 15:53

\(x^2-2x-24\)

\(=x^2-6x+4x-24\)

\(=x(x-6)+4(x-6)\)

\(=(x+4)(x-6)\)

Trần Diệu Linh
2 tháng 9 2021 lúc 15:54

\(x^2-2x-24\\ =x^2-2x+1-25\\ =\left(x-1\right)^2-5^2\\ =\left(x-1-5\right)\left(x-1+5\right)\\ =\left(x-6\right)\left(x+4\right)\)

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 23:16

\(x^2-2x-24=\left(x-6\right)\left(x+4\right)\)

Đạt Nguyễn
Xem chi tiết
Kirito-Kun
2 tháng 9 2021 lúc 17:20

-x2 - 5x + 24

= -x2 + 3x - 8x + 24

= -x(x + 3) - 8(x - 3)

= (-x - 8)(x + 3)

Edogawa Conan
2 tháng 9 2021 lúc 17:21

=(3x-x2)+(24-8x)=3x(1-x)+8(1-x)=(1-x)(3x+8)

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 19:36

\(-x^2-5x+24\)

\(=-x^2-8x+3x+24\)

\(=\left(x+8\right)\left(-x+3\right)\)

Đạt Nguyễn
Xem chi tiết
Kirito-Kun
4 tháng 9 2021 lúc 18:41

(1 + x2)2 - 4x(1 - x2)

= (1 + x2)(1 + x2) - 4x(1 - x2)

= (1 + x2 - 4x)(1 + x2 - 1 + x2)

= 2x2(x2 - 4x + 1)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 19:54

Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)

\(=x^4+2x^2+1+4x^3-4x\)

\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)

\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)

Đạt Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 10:44

\(x^2-x-2020.2021=x^2+2020x-2021x-2020.2021=x\left(x+2020\right)-2021\left(x+2020\right)=\left(x+2020\right)\left(x-2021\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 13:29

\(x^2-x-2020\cdot2021\)

\(=\left(x-2021\right)\left(x+2020\right)\)

Đạt Nguyễn
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 12:14

Ta có: (x2+6x-5)(x2+6x+3)-20

      = [(x2+6x-1)-4][(x2+6x-1)+4]-20

      = (x2+6x-1)2-16-20

      = (x2+6x-1)2-36

      = (x2+6x-7)(x2+6x-5)

      = (x+7)(x-1)(x2+6x-5)

Nguyễn Hoàng Minh
4 tháng 9 2021 lúc 12:15

\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)\\ =\left(x^2+6x-1\right)^2-16-20\\ =\left(x^2+6x-1\right)^2-36\\ =\left(x^2+6x-1-6\right)\left(x^2+6x-1+6\right)\\ =\left(x^2+6x-7\right)\left(x^2+6x+5\right)\\ =\left(x-1\right)\left(x+7\right)\left(x+1\right)\left(x+5\right)\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 12:49

\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)-20\)

\(=\left(x^2+6x\right)^2-2\left(x^2+6x\right)-35\)

\(=\left(x^2+6x-7\right)\left(x^2+6x+5\right)\)

\(=\left(x+7\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\)