Cho đường thẳng: y=-2x+3
Tính khoảng csch từ điểm C(0;-2) đến đường thẳng (d)
Bài 5: Cho (d): y = -2x + 3
a) Tìm tọa độ giao điểm A, B của ĐTHS lần lượt với Ox, Oy
b) Tính khoảng cách từ gốc tọa độ đến đường thẳng (d)
c) Tính khoảng cách từ C(0; -2) đến đường thẳng (d)
\(a,\) Pt hoành độ giao điểm
\(x=0\\ \Leftrightarrow y=-2\cdot0+3=3\\ \Leftrightarrow A\left(0;3\right)\)
Pt tung độ giao điểm
\(y=0\\ \Leftrightarrow0=-2x+3\Leftrightarrow x=\dfrac{3}{2}\\ \Leftrightarrow B\left(\dfrac{3}{2};0\right)\)
Trong mặt phẳng Oxy, cho đường tròn (C): x²+y² -2x +4y=0 và đường thẳng delta: x+2y+7=0. Tìm tọa độ điểm M€(C) sao cho khoảng cách từ điểm M đến đường thẳng delta lớn nhất.
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)
Phương trình d có dạng:
\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)
Hệ pt tọa độ giao điểm (C) và d:
\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)
Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)
Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)
Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm
1) Tính khoảng cách từ điểm M đến đường thẳng d, với:
M(3,5); (d): x + y + 1 =0
M(2,3); (d): {x-2t, y = 2 + 3t
M(2,-3); (d): (x - 2)/2 = ( y + 1)/3
2) Viết phưởng trình đường thẳng d song song với đường thẳng △: 2x - y +3 =0 và cách △ một khoảng bằng căn 5
\(1/\)
\(M\left(3;5\right);d:x+y+1=0\)
\(\)Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|x_M+y_M+1\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3+5+1\right|}{\sqrt{1^2+1^2}}=\dfrac{9\sqrt{2}}{2}\)
\(M\left(2;3\right);d:\left\{{}\begin{matrix}x-2t\\y=2+3t\end{matrix}\right.\)
d qua \(M\left(2;3\right)\) có \(VTCP\overrightarrow{u}=\left(-2;3\right)\Rightarrow VTPT\overrightarrow{n}=\left(3;2\right)\)
\(PTTQ\) của \(\Delta:3\left(x-2\right)+2\left(y-3\right)=0\)
\(\Rightarrow3x-6+2y-6=0\)
\(\Rightarrow3x+2y-12=0\)
Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|3.x_M+2.y_M-12\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3.2+2.3-12\right|}{\sqrt{3^2+2^2}}=0\)
Cho đường thẳng (d) : y = 2x + 3
a) Tính khoảng cách từ điểm A(1; 2) đến đường thẳng (d)
b) Tính diện tích tam giác tạo bởi (d) với các trục tọa độ
c) Viết phương trình đường thẳng (∆) đi qua A sao cho khoảng cách từ O đến ∆ là lớn nhất, nhỏ nhất
Cho đường thẳng ( d ) : y = -2x + 3
a) Xác định tọa độ giao điểm A và B của đường thẳng ( d ) với hai trục Ox , Oy . Tinh khoang cach tu diem O ( 0 ; 0 ) den duong thang (d)
b) Tính khoảng cách từ điểm C ( 0 ; -2 ) đến đường thẳng ( d )
Cho đường thẳng (d): y = -2x + 3. Xác định tọa độ giao điểm A;B của đường thẳng (d) với hai trục Ox, Oy. Tính khoảng cách từ điểm O(0;0) đến đường thẳng (d)
* Giao điểm với trục Ox:
Ta có: -2x + 3 = 0
⇔ 2x = 3
⇔ x = 3/2
⇒ A(3/2; 0) là giao điểm với trục Ox
* Giao điểm với trục Oy:
x = 0 ⇔ y = 3
⇒ B(0; 3) là giao điểm với trục Oy
* Khoảng cách từ O(0; 0) tới (d):
Xét đồ thị:
Ta có:
AB² = OA² + OB² (Pytago)
= (3/2)² + 3²
= 45/4
⇒ AB = 3√5/2
Khoảng cách từ O đến (d) là đoạn thẳng OH
Ta có:
OH.AB = OA.OB
⇒ OH = OA.OB : AB
= 3/2 . 3 : (3√5/2)
= 3/√5
khoảng cách là \(\dfrac{3}{\sqrt{5}}\)
Cho đường thẳng ( d ) : y = -2x + 3
a) Xác định tọa độ giao điểm A và B của đường thẳng ( d ) với hai trục Ox , Oy . Tinh khoang cach tu diem O ( 0 ; 0 ) den duong thang (d)
b) Tính khoảng cách từ điểm C ( 0 ; -2 ) đến đường thẳng ( d )
AI GIẢI NHANH VÀ CHI TIẾT MINH TÍCH 20 LIKE !
a/ Tọa độ A là nghiệm của hệ
\(\hept{\begin{cases}y=-2x+3\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,5\\y=0\end{cases}}\)
=> A(1,5; 0)
Tọa độ B là nghiệm của hệ
\(\hept{\begin{cases}x=0\\y=-2x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}\)
=> B(0; 3)
Khoản cách từ O(0; 0) đến d
\(=\frac{\left|0-2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{3}{\sqrt{5}}\)
b/ Khoản cách từ C(0; - 2) đến d là
\(d\left(C,d\right)=\frac{\left|-2+2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{5}{\sqrt{5}}=\sqrt{5}\)
A/ TỌA ĐỘ A THỎA \(\hept{\begin{cases}Y=0\\Y=-2X+3\end{cases}}\)\(\Rightarrow\Rightarrow A\left(\frac{3}{2},O\right)\)
TỌA ĐỘ B THỎA,\(\hept{\begin{cases}Y=-2X+3\\X=0\end{cases}}\)\(\Rightarrow B\left(0,3\right)\)
GOI H LA HINH CHIEU CUA O LEN (d) ap dung he thuc luong trong tam giac vuongOAB cho
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{OH^2}=\frac{1}{\left(\frac{3}{2}\right)^2}+\frac{1}{3^2}\Rightarrow AH=\frac{3}{\sqrt{5}}\)
B/GỌI K LÀ HÌNH CHIẾU CỦA C LÊN (d) ta co\(\frac{OH}{CK}=\frac{OB}{OC}=\frac{3}{5}\Rightarrow CK=\frac{5}{3}OH=\sqrt{5}\)
(....20 NHA)
Cảm ơn bạn alibaba nguyễn ! Mk có án 20 sao nó lại chỉ đc 1 nhỉ ? @@
Tam giác ABC có AB:2x+y-5=0, AC:x-3y+1=0. Tính khoảng cách từ điểm A tới đường thẳng 7x-8y+26=0
A là giao điểm AB và AC nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}2x+y-5=0\\x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)
\(d\left(A;...\right)=\dfrac{\left|7.2-8.1+26\right|}{\sqrt{7^2+\left(-8\right)^2}}=\dfrac{32}{\sqrt{113}}\)
Cho các đường thẳng d1: x+y+3=0 , d2: x-y-4=0 , d3: x-2y=0. Tìm tọa độ điểm M nằm trên đường thẳng d3 sao cho khoảng cách từ M đến đường thẳng d1 bằng hai lần khoảng cách từ M đến đường thẳng d2
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)