Chứng tỏ rằng 3232...32( n số 32 ) chia hết cho 31
Chứng minh rằng tồn tại số có dạng 3232..........32 chia hết cho 31
Giúp mình với
Xét 32 số có dạng 32,3232,...,3232...3232
Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31
Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)
Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )
Mặt khác (10m,31)=1
Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31
Chứng tỏ rằng:
\(a)M = {32^{2023}} - {32^{2021}}\) chia hết cho 31
b) \(N = {7^6} + {2.7^3} + {8^{2022}} + 1\) chia hết cho 8
\(\begin{array}{l}a)M = {32^{2023}} - {32^{2021}}\\M = {32^{2021}}\left( {{{32}^2} - 1} \right)\\M = {32^{2021}}.1023\end{array}\)
Vì \(1023 \vdots 31\) nên \(M = \left( {{{32}^{2021}}.1023} \right) \vdots 31\)
Vậy M chia hết cho 31.
\(\begin{array}{l}b)N = {7^6} + {2.7^3} + {8^{2022}} + 1\\N = {\left( {{7^3}} \right)^2} + {2.7^3} + 1 + {8^{2022}}\\N = {\left( {{7^3} + 1} \right)^2} + {8^{2022}}\\N = {\left( {344} \right)^2} + {8^{2022}}\\N = {\left( {8.43} \right)^2} + {8^{2022}}\\N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right)\end{array}\)
Vì \({8^2} \vdots 8\) suy ra \(N = {8^2}\left( {{{43}^2} + {8^{2020}}} \right) \vdots 8\)
Vậy N chia hết cho 8
Chứng tỏ rằng 31 + 32 + 33 +…+ 399 + 3100 chia hết cho 4.
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M
5
đăng 3 lần rồi giúp mik ik
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik ik mik cần gắp
Cho biểu thức A=31+32+34+….+360.chứng tỏ rằng A chia hết cho 40.
nhanh giúp mk với ạ cảm ơn
\(A=3+3^2+3^3+...+3^{60}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(\Rightarrow A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(3+3^5+...+3^{57}\right)\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40\left(3+3^5+...+3^{57}\right)⋮40\)
a)Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
b)Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
hãy giúp mik và chỉ cách trình bày cho mik nhen
CMR tồn tại số có dạng 3232....32 chia hết cho 32
323232..........32=101010..10.32
=> tồn tại.....................
sao 1010...10 chia hết cho 32 vậy bạn
ko p 101010....10 chia hết cho 32 mà là bởi vì trong 1 tích nếu có 1 thừa số chia hết cho số đò thì tích đó chia hết cho số đó,mh ko bt đúng hay sai nhưng đây chỉ là cách nghĩ của mh mà thôi
chứng tỏ 49^31+32^2000 chia hết cho 5