CM : \(x^2-xy+y^2\)\(\ge0\) với mọi x ; y
cm:
\(x^2+xy+y^2+1\ge0\) với mọi x y
\(VT=x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)
Xem lại đề nhé
Cho 2 số \(x,y\ge0\)
CM: \(x+y\ge2\sqrt{xy}\)
Ta có :x+y\(\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+2\sqrt{x}\sqrt{y}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(luôn đúng với mọi x,y\(\ge0\))
Dấu"+" xảy ra khi:\(\sqrt{x}=\sqrt{y}\Leftrightarrow x=y\)
Vậy với mọi x,y\(\ge0\) thì x+y\(\ge2\sqrt{xy}\)
đong 2 bạn đổi lại dấu +\(2\sqrt{xy}\) thành -\(2\sqrt{xy}\) giùm mình
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Cm rằng x2 + xy + y^2 + 1 > 0 với mọi x, y
\(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)
Rút gọn : a) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
b)\(\dfrac{x+4y-4\sqrt{xy}}{\sqrt{x}-2\sqrt{y}}+\dfrac{y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x\ge0;y\ge0;x\ne4y\right)\)
c)\(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\)
d)\(\dfrac{9-x}{\sqrt{3x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}\)
e)\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
g)\(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)với\) a, b \(\ge\)0 , a \(\ne\)9; b\(\ne\)25
Mọi người giúp tớ với , cảm ơn nhiều nhiều ạ !!
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
CM: x2 + xy + y2 + 1 > 0 với mọi x , y
x2 + xy + y2 + 1 = (x2 + 2.x. \(\frac{y}{2}\) + (\(\frac{y}{2}\))2 ) + \(\frac{3y^2}{4}\) + 1 = (x + \(\frac{y}{2}\))2 + \(\frac{3y^2}{4}\) + 1 \(\ge\) 0 + 0 + 1 = 1> 0 với mọi x; y
Ta có:
x2+xy+y2+1=x2+xy+1/4.y2+3/4.y2+1=(x+1/2.y)2+3/4.y2+1
Mà (x+1/2.y)2 \(\ge\)0
3/4.y2>=0
1>0
Suy ra (x+1/2.y)2+3/4.y2+1>0
Hay x2+xy+y2+1>0(đpcm)
≥0
3/4.y2>=0
1>0
Suy ra (x+1/2.y)2+3/4.y2+1>0
Hay x2+xy+y2+1>0(đpcm)
1. CM:
a) x2 - 6x + 10 > 0 với mọi x
b) x2 - 4x + 7 > hoặc = 3 với mọi x
c) x2 + x + 1 > 0 với mọi x
d) x2 + y2 + 4x - 6y + 15 = 0 với mọi x
2. CM: (a - b)2 = (a + b)2 - 4ab
3. Cho x + y = 7 và xy = -3. Tính: x2 + y2
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
P=xy(x-2)(y+6) + 12x2 -24x +3y2 + 18y +36. CM : P luôn dương với mọi x,y thuộc R
1. CM:
a) x2 - 6x + 10 > 0 với mọi x
b) x2 - 4x + 7 > hoặc = 3 với mọi x
c) x2 + x + 1 > 0 với mọi x
d) x2 + y2 + 4x - 6y + 15 = 0 với mọi x
2. CM: (a - b)2 = (a + b)2 - 4ab
3. Cho x + y = 7 và xy = -3. Tính: x2 + y2
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
1.
c) Đặt \(C=x^2+x+1\)
\(C=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\)
\(C=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{3}{4}>0\)
Vậy ...
d) Đặt \(D=x^2+y^2+4x-6y+15\)
\(D=\left(x^2+4x+4\right)+\left(y^2-6y+9\right)\)
\(D=\left(x+2\right)^2+\left(y-3\right)^2\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\left(y-3\right)^2\ge0\forall y\)
\(\Rightarrow D\ge0\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)