\(y=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)
hàm số trên đồng biến hay nghịch biến vì sao
hàm số \(y=\left(\sqrt{2}-1\right)x-3\) đồng biến hay nghịch biến trên R? vì sao ?
Vì \(\sqrt{2}-1=\sqrt{2}-\sqrt{1}>0\)
nên hàm số \(y=\left(\sqrt{2}-1\right)x-3\) đồng biến trên R
Hàm số y =(\(\sqrt{ }\)2 -1)x-3 là đồng biến trên R. Vì Hàm số trên có tính chất :
- Đồng biên trên R với a > 0
- Nghịch biến trên R với a < 0
Hàm số \(y=\left(2-\sqrt{5}\right)x-2\) đồng biến hay nghịch biến trên R? Vì sao
Vì \(4< 5\Leftrightarrow\sqrt{4}< \sqrt{5}\Leftrightarrow2< \sqrt{5}\Leftrightarrow2-\sqrt{5}< 0\)
Do đó hàm số \(y=\left(2-\sqrt{5}\right)x-2\)nghịch biến trên \(ℝ\)
Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?
a) \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\)
b) \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\)
c) \(y = {\log _\pi }x\)
d) \(y = {\log _{\frac{{\sqrt {15} }}{4}}}x\)
\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)
Hàm số đồng biến là: \(log_{\pi}x\)
Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)
cho hàm số bậc nhất y=F(x)=\(\left(\sqrt{3}-1\right)\) X+1
a) hàm số trên là đồng biến hay nghịch biến trên R
b)tính các giá trị F(0);F\(\left(\sqrt{3}+1\right)\)
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
\(y=\left(\sqrt{x}+1\right)^2+\left(m-1\right)\left(\sqrt{x}-1\right)^2-m\left(\sqrt{x}+3\right)\)
Tìm m để hàm số sau là hàm số bậc nhất. Khi đó hàm số là đồng biến hay nghịch biến?
Cho hàm số y=\(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)
a) Xét sự đồng biến và nghịch biến của các hàm số trên;
b) Tính giá trị của y khi x=\(3+2\sqrt{2}\)
a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến
b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:
\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)
\(=9-8+\sqrt{2}-1\)
\(=\sqrt{2}\)
a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.
b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`
`=> y=\sqrt2` khi `x=3+2\sqrt2`
bài 1 : với giá trị nào của m thì hàm số trên là hàm số bậc nhất
a, \(\frac{m-5}{m+2}.x-4\)
b,\(\sqrt{3-m}.\left(x-2\right)+1\)
bài 2 : các hàm số sau đồng biến hay nghịch biến trên R , vì sao ?
a,\(y=\left(\sqrt{5}-2\right).x-1\)
b, \(y=\sqrt{3x}-2x-9\)
c. \(\frac{y}{3}-\frac{x}{2}=1\)
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
bài 1.Cho hàm số bậc nhất y = (1-\(\sqrt{5}\))x-1
hàm số đồng biến hay nghịch biến trên R ? vì sao
tính y khi x=1+\(\sqrt{5}\)
tính x khi y=\(\sqrt{5}\)
Cho hàm số y=(5-3\(\sqrt{ }\)2)x+\(\sqrt{ }\)2 -1
a) Hàm số đã cho đồng biến hay nghịch biến trên tập?vì sao
b) Tính giá trị của y khi x=5+3\(\sqrt{ }\)2
c) Tìm các giá trị của x khi y=0
a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R
b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)
c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)
\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)