Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$
b.
$F(0)=(\sqrt{3}-1).0+1=1$
$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$
cho hàm số bậc nhất y=F(x)=(√3−1)(3−1) X+1
a) hàm số trên là đồng biến hay nghịch biến trên R
b)tính các giá trị F(0);F(√3+1)(3+1)
help me !
Cho hàm số: \(y=f\left(x\right)=\left(m-1\right)\left(m+2\right)x^2-3mx-4\)
a) Với giá trị nào của m thì hàm số trên là hàm số bậc nhất?
b) Với những giá trị m mà hàm số là bậc nhất thì nó đồng biến, nghịch biến?
hãy nêu tính đồng biến, nghịch biến của các hàm số bậc nhất sau:
a, y=2x-7
b, y=\(\left(1-\sqrt{2}\right)x+\sqrt{3}\)
c, y=-5x+2
d, y=\(\left(1+m^2\right)x-6\)
e, y=\(y=\left(\sqrt{3}-1\right)x+2\)
f=(2+m^2)x+1
Cho hàm số y=f(x) = \(6x-1-\sqrt{5}\left(2x-1\right)\)
Chứng tỏ hàm số trên là hàm số bậc nhất và hàm số đồng biến trên R
Cho hàm số y=f(x)=\(4x+1-\sqrt{3}\left(2x+1\right)\)
a) Chứng tỏ rằng hàm số trên là hàm số bậc nhất đồng biến
b) Tìm x để f(x)=0
Cho hàm số y=\(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)
a) Xét sự đồng biến và nghịch biến của các hàm số trên;
b) Tính giá trị của y khi x=\(3+2\sqrt{2}\)
\(y=\left(\sqrt{x}+1\right)^2+\left(m-1\right)\left(\sqrt{x}-1\right)^2-m\left(\sqrt{x}+3\right)\)
Tìm m để hàm số sau là hàm số bậc nhất. Khi đó hàm số là đồng biến hay nghịch biến?
Cho hàm số y=(5-3\(\sqrt{ }\)2)x+\(\sqrt{ }\)2 -1
a) Hàm số đã cho đồng biến hay nghịch biến trên tập?vì sao
b) Tính giá trị của y khi x=5+3\(\sqrt{ }\)2
c) Tìm các giá trị của x khi y=0
Cho hàm số:
\(y=f\left(x\right)=\left(m^2-\sqrt{3}m-\sqrt{2}m+6\right)x+7\)
Với giá trị nào của m thì hàm số đồng biến , nghịch biến.