Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Khuyên
Xem chi tiết
Nguyễn Minh Quang 123
Xem chi tiết
Trương Phúc Uyên Phương
7 tháng 10 2015 lúc 22:15

ta có : a = 5 - b \(\Rightarrow a+b=5\)

theo bđt cô si ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\)

                  \(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)

                  \(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

                  \(\Leftrightarrow\frac{25}{4}\ge ab\) ab đạt GTNN khi ab = \(\frac{25}{4}\)

                 ta có   \(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

                  \(P\ge\frac{2}{\sqrt{ab}}\Leftrightarrow P\ge\frac{2}{\sqrt{\frac{25}{4}}}=\frac{4}{5}\)

dấu " = " xảy ra khi P = 4/5

mik làm lụi >_< 

 

nguyen thanh tung
Xem chi tiết
Ngũ Anh Tuấn
Xem chi tiết
Đặng Quân
Xem chi tiết
Akai Haruma
4 tháng 2 2023 lúc 14:09

Bạn xem lại xem viết đề đã đúng chưa vậy?

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 20:10

\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)

\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)

Dấu "=" xảy ra khi \(a=b=2\)

Dragon Gaming
Xem chi tiết
zZz Cool Kid_new zZz
6 tháng 7 2020 lúc 18:42

Ta dễ có:

\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)

\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)

\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)

\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)

Đẳng thức xảy ra tại \(a=b=1\)

hmm check hộ mình nhá

Khách vãng lai đã xóa
Vũ Nam Khánh
Xem chi tiết
alibaba nguyễn
13 tháng 3 2021 lúc 13:12

\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)

\(P=\frac{1}{a^2+b^2+1}+\frac{\frac{1}{9}}{2ab}+\frac{4}{9ab}\)

\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{a^2+b^2+1+2ab}+\frac{4}{9ab}\)

\(\ge\frac{\left(1+\frac{3}{4}\right)^2}{\left(a+b\right)^2+1}+\frac{16}{9\left(a+b\right)^2}\)

\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{1+1}+\frac{16}{9}=\frac{8}{3}\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

Khách vãng lai đã xóa
Eagle 2k10
Xem chi tiết