Cho hai số dương a,b và a=5-b.Tìm GTNN của tổng P=1/a+1/b
cho hai số dương a,b và a=5-b
tìm GTNN của P=1/a + 1/b
cho 2 số dương a,b và a=5-b tìm gtnn của tổng : \(P=\frac{1}{a}+\frac{1}{b}\)
ta có : a = 5 - b \(\Rightarrow a+b=5\)
theo bđt cô si ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Leftrightarrow\frac{25}{4}\ge ab\) ab đạt GTNN khi ab = \(\frac{25}{4}\)
ta có \(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(P\ge\frac{2}{\sqrt{ab}}\Leftrightarrow P\ge\frac{2}{\sqrt{\frac{25}{4}}}=\frac{4}{5}\)
dấu " = " xảy ra khi P = 4/5
mik làm lụi >_<
cho hai số dương a và b thỏa mãn a.b=1.Tính GTNN của biểu thức B=1/a+1/b+2/(a+b)
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
Cho hai số dương a và b thỏa mãn:a+b≤2. Tìm GTNN của biẻu thức:M=\(\dfrac{1}{a^2+b^2}+ab+{2}{ab}\)
Bạn xem lại xem viết đề đã đúng chưa vậy?
Cho hai số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
Cho hai số dương a và b thoả mãn (a + b)2 + a + b = 2 + 4ab. Tìm GTNN của P = \(\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}.\)
Ta dễ có:
\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)
\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)
\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)
\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)
Đẳng thức xảy ra tại \(a=b=1\)
hmm check hộ mình nhá
Cho hai số dương a và b thỏa mãn \(a+b\le1\).Tìm GTNN của:
\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)
\(P=\frac{1}{a^2+b^2+1}+\frac{1}{2ab}\)
\(P=\frac{1}{a^2+b^2+1}+\frac{\frac{1}{9}}{2ab}+\frac{4}{9ab}\)
\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{a^2+b^2+1+2ab}+\frac{4}{9ab}\)
\(\ge\frac{\left(1+\frac{3}{4}\right)^2}{\left(a+b\right)^2+1}+\frac{16}{9\left(a+b\right)^2}\)
\(\ge\frac{\left(1+\frac{1}{3}\right)^2}{1+1}+\frac{16}{9}=\frac{8}{3}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
Cho hai số nguyen dương a + b < 1 . Tìm GTNN của biểu thức A = \(ab+\dfrac{1}{ab}\)