Bạn xem lại xem viết đề đã đúng chưa vậy?
Bạn xem lại xem viết đề đã đúng chưa vậy?
cho 2 số dương a,b thỏa a+b<2. Tìm GTNN: M=1/(a^2+b^2) + ab + 2/(ab)
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
cho a b là các số thụce thỏa mãn \(2a^2\)+\(\dfrac{1}{\text{a}^2}\)+\(\dfrac{\text{b^2}}{\text{4}}\)
tìm gtnn của biểu thức M=ab
cho 2 số a,b dương thỏa mãn:a3+b3=a5+b5.Tính giá trị lớn nhất của M=a2+b2-ab
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
Cho hai số nguyen dương a + b < 1 . Tìm GTNN của biểu thức A = \(ab+\dfrac{1}{ab}\)
1.Tìm GTLN của các biểu thức:
a,A= -x - 4y2 + 6x - 8y + 3
b, B= x4 - 6x3 + 15x2 - 20x - 15
2.Cho các số thực a,b thỏa mãn: 2a2 + \(\dfrac{b^2}{4}\)+\(\dfrac{1}{a^2}\)=4. Tìm GTNN và GTLN của A= ab+2019
giúp mình với ạ, mình cảm ơn
Cho a,b là 2 số thực dương thỏa mãn : a+b=1. Tìm GTNN của P = \(ab\)+ \(\frac{10}{ab}\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)