Cho hai số dương a và b thỏa mãn:a+b≤2. Tìm GTNN của biẻu thức:M=\(\dfrac{1}{a^2+b^2}+ab+{2}{ab}\)
Cho a, b, c là các số thực dương thay đổi thỏa mãn điều kiện: a+b+c=1.
Tìm GTNN của biểu thức:
M=14(\(a^2\)+\(b^2\)+\(c^2\))+\(\dfrac{ab+ac+bc}{a^2b+b^2c+c^2a}\)
Cho các số thực dương a,b. Tìm GTLN của biểu thức: \(P=\left(a+b\right)\left(\dfrac{1}{a^3+b}+\dfrac{1}{b^3+a}\right)-\dfrac{1}{ab}\)
cho a b là các số thụce thỏa mãn \(2a^2\)+\(\dfrac{1}{\text{a}^2}\)+\(\dfrac{\text{b^2}}{\text{4}}\)
tìm gtnn của biểu thức M=ab
tìm GTNN của biểu thức S= ab+\(\dfrac{1}{ab}\) biết a,b > 0 và a+b ≤ 1
giúp mình với ạ
Bài tập sử dụng BĐT Cauchy
B1: Cho số thực \(a\ge6\). Tìm GTNN của biểu thức
\(A=a^2+\frac{18}{a}\)
B2: Cho các thực dương a,b thỏa mãn \(a+b\le1\) . Tìm GTNN của biểu thức
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
B3: Cho a,b là các số thực dương tùy ý. Tính GTNN của biểu thức
\(A=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Cho hai số a, b không đồng thời bằng 0. Tìm GTLN, GTNN của biểu thức :
\(Q=\dfrac{a^2-ab+b^2}{a^2+ab+b^2}\)
cho a, b là 2 só dương có a + b = 1 . Tìm GTNN của biểu thức \(A=\frac{1}{a^2+b^2}+\frac{1}{ab}\)
1.Tìm GTLN của các biểu thức:
a,A= -x - 4y2 + 6x - 8y + 3
b, B= x4 - 6x3 + 15x2 - 20x - 15
2.Cho các số thực a,b thỏa mãn: 2a2 + \(\dfrac{b^2}{4}\)+\(\dfrac{1}{a^2}\)=4. Tìm GTNN và GTLN của A= ab+2019
giúp mình với ạ, mình cảm ơn