Xác định m để pt \(x^2-2xn-3m+9=0\)có 2 nghiệm phân biệt trong đó có đúng 1 nghiệm lớn hơn 1
Tìm m để x2-2mx-3m+9=0 có 2 nghiệm phân biệt trong đó đúng 1 nghiệm lớn hơn 1
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=m^2-(-3m+9)>0$
$\Leftrightarrow m^2+3m-9>0$
$\Leftrightarrow m> \frac{3\sqrt{5}-3}{2}$ hoặc $m< \frac{-3\sqrt{5}-3}{2}$
Áp dụng định lý Viet:
$x_1+x_2=2m; x_1x_2=-3m+9$
2 nghiệm có đúng một nghiệm lớn hơn 1, tức là nghiệm kia nhỏ hơn hoặc bằng 1.
Nếu nghiệm kia bằng 1, tức $1^2-2m-3m+9=0$
$\Rightarrow m=2$
Khi đó, pt trở thành $x^2-4x+3=0$
$\Rightarrow (x-1)(x-3)=0\Rightarrow x=3$ là nghiệm còn lại (thỏa mãn đề)
Nếu nghiệm kia $<1$
Điều này xảy ra khi: $(x_1-1)(x_2-1)< 0$
Để $(x_1-1)(x_2-1)< 0$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1< 0$
$\Leftrightarrow -3m+9-2m+1< 0$
$\Leftrightarrow 10-5m< 0$
$\Leftrightarrow m< 2$
Vậy tóm lại $m\leq 2$ thì thỏa mãn đề.
Bt:a, xác định m để pt ẩn x sau có 2 nghiệm dương phân biệt: x^2-(m+3)x+3m=0
b, xác định m để pt ẩn x sau có nghiệm này bằng 3 nghiệm kia: x^2-(2m+1)x+m^2+m-6=0
Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!
\(x^2-\left(m+3\right)x+3m=0\)
\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)
\(=m^2-9m+9=\left(m-3\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)
\(\Rightarrow m\ne3\)
Cho pt: \(x^2+2\left(m+1\right)x+m^2=0\) (1). Xác định m để PT:
a) có 2 nghiệm phân biệt
b) Có 2 nghiệm phân biệt trong đó có 1 nghiệm = -2, tìm nghiệm kia ?
\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)
a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)
b) thay x = -2 vào pt , ta được :
\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)
\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)
a) Phương trình có 2 nghiệm phân biệt:
<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)
<=> m > -1/2
Vậy....
b) Phương trình có 2 nghiệm phân biệt trong đó có 1 nghiệm x = - 2
Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)
<=> m = 0 (thỏa mãn )
hoặc m = 4 ( thỏa mãn)
Vậy ...
ối em nhầm cái đoạn a. . đáng lẽ là 8m+4 chứ ko phải 4m+1
\(\Rightarrow m>\frac{-1}{2}\)mới đúng
cho f(x)=-x^2+4x+3m-1 . xác định m để pt f(x)=0 có 2 nghiệm phân biệt (1;dương vô cùng )
Chp pt: \(x^2-\left(2m+3\right)m^2+3m+2=0\)
1)CM pt luôn có 2 nghiệm phân biệt
2)Tìm m để pt có 1 nghiệm bằng 2.Tìm nghiệm còn lại
3)Xác định m để pt có 2 nghiệm thỏa mãn: \(-3< x_1< x_2< 6\)
4)Xác định m để pt có 1 nghiệm bằng bình phương nghiệm kia
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
Cho pt: x2 + (3m + 2)x + 3m + 1 = 0
Tìm tất cả giá trị của m để pt có 2 nghiệm phân biệt nhỏ hơn 2
Xét phương trình đã cho có dạng: $ax^2+bx+c=0$ với \(\left\{{}\begin{matrix}a=1\ne0\\b=3m+2\\c=3m+1\end{matrix}\right.\)
suy ra phương trình đã cho là phương trình bậc hai một ẩn $x$
Có $Δ=b^2-4ac=(3m+2)^2-4.(3m+1).1=9m^2=(3m)^2 \geq 0$ với mọi $m$ nên phương trình có 2 nghiệm phân biệt $⇔m \neq 0$
nên phương trình đã cho có 2 nghiệm $x_1;x_2$ với
$x_1=\dfrac{-b-\sqrt[]{ Δ}}{2a}=\dfrac{-(3m+2)-3m}{2}=-3m-1$
$x_2=\dfrac{-b+\sqrt[]{Δ}}{2a}=\dfrac{-(3m+2)+3m}{2}=-1$
Nên phương trình có 2 nghiệm nhỏ hơn 2 $⇔-3m-1<2⇔m>-1$
Vậy $m>-1;m \neq 0$ thỏa mãn đề
Ta có: \(\text{Δ}=\left(3m+2\right)^2-4\cdot1\cdot\left(3m+1\right)\)
\(=9m^2+12m+4-12m-4\)
\(=9m^2\ge0\forall m\)
Do đó: Phương trình luôn có 2 nghiệm
Để phương trình có hai nghiệm phân biệt thì \(9m^2\ne0\)
hay \(m\ne0\)
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3m-2}{1}=-3m-2\\x_1\cdot x_2=\dfrac{3m+1}{1}=3m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1< 2\\x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1-2\left(-3m-2\right)+4>0\\-3m-2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m+1+6m+4+4>0\\-3m< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9m>-9\\m< -2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m< -2\end{matrix}\right.\Leftrightarrow-3< m< -2\)
Kết hợp ĐKXĐ, ta được: -3<m<-2
Vậy: -3<m<-2
cho pt x² - 2(2m-1)x+4m²=0 a) xác định m để pt có 2 nghiệm phân biệt b) xác định m để pt vô nghiệm c) giải pt với m=2 Mọi người giúp em với ạ.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)