CMR với mọi a, b, c > 0 ta có (1/ a) + (1/ b) + (1/ c) >= 9/ ( a+ b+ c)
CMR với mọi a, b, c > 0 ta có (1/ a) + (1/ b) + (1/ c) >= 9/ ( a+ b+ c)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
áp dụng cô si ta có : \(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge3\cdot3\cdot\sqrt[3]{a^3b^3c^3}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\left(đpcm\right)\)
a) 1/a + 1/b + 1/c ≥ 9/(a+b+c)
<=> (1/a + 1/b + 1/c )(a+b+c) ≥ 9
Ta có : 1/a + 1/b + 1/c ≥ 3.căn bậc 3 1/abc
a+b+c ≥ 3 căn bậc 3 abc
(1/a + 1/b + 1/c)(a+c+c) ≥ 9 căn bậc 3 abc/abc = 9
<=> 1/a + 1/b + 1/c ≥ 9(a+b+c)
Hok tốt !!!!!!!!!!!
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{3^2}{a+b+c}=\frac{9}{a+b+c}\)
=> đpcm . Dấu "=" <=> a=b=c
cmr
với mọi a,b,c là các số nguyên dương.,ta có
(a+b+c). (1/a+1/b+1/c) lớn hơn hoặc bằng 9.
giúp e bài toán này với
Bài 1: Cho a, b, c thõa mãn 0<a<=b<=c. CMR:
a/b+b/c+c/a>=b/a+c/b+a/c
Bài 2: Cho a, b, c>0 CMR
a/bc+b/ca+c/ab>=2(1/a+1/b+1/c)
Bài 3: CMR với mọi x, y ta có
x^3/x^2+xy+y^2>=(2x-y)/3
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
CMR: Với mọi a,b,c thuộc N* ta có : 1<a/a+b +b/b+c +c/c+a <2
CMR với a,b,c là các số dương ta có (a+b+c)(1/a+1/b+1/c)>= 9 >= đây là dấu lớn hơn hoặc bằng nha
xét vế trái ta có (nhân vào )
a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c >= 9
<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9
áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được
3 +2 +2+2 >=9
=> đpcm
ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !
vì a/b +b/a >=2 nên ta xét hiệu:
a/b + b/c - 2 >= 0
ta quy đồng mẫu các phân số :
<=> a2 /ab + b2/ab - 2ab/ab >= 0
<=> (a2 + b2 - 2ab) / ab = (a-b)2 /ab >=0
dấu = xảy ra khi a-b =0 <=> a=b
nên a/b + b/a - 2 >=0
<=> a/b + b/a >= 2 dấu = xảy ra khi a=b
Bài 1: Cho a, b, c>0, cmr:
a/bc+b/ca+c/ab>=2(1/a+1/b-1/c)
Bài2: CMR với mọi x, y, ta có
x^3/x^2+xy+y^2>=2x-y/3
lm ơn lm giùm mk ạ
thanks trc
Bài 1 : Cmr :
a, \(a+\frac{1}{a-1}\ge3\) với mọi a>1
b, \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a \(\in R\)
Bài 2 : Cho a>0. Cmr \(\frac{a^2+5}{\sqrt{a^2+4}}\ge2\)
Bài 3 : Cho a,b,c>0. Cmr \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< 2\)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
CMR với mọi a,b,c > 0 , a + b + c = 0 thì :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>6\)
\(a;b;c>0\) và \(a+b+c=0\)?
Làm sao để điều này xảy ra được?
Chứng minh rằng với mọi a,b,c>0 thì ta có: 1<a/a+b+b/b+c+c/c+a