\(a;b;c>0\) và \(a+b+c=0\)?
Làm sao để điều này xảy ra được?
\(a;b;c>0\) và \(a+b+c=0\)?
Làm sao để điều này xảy ra được?
cho a,b,c là các số thực khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). tính A = \(\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\) a,b,c khác 0
Chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1. a)Cho a-b+c-d=0. Chứng minh rằng: a3 - b3 + c3 - d3=3(c-d)(cd-ab)
b) cho a+d=b-c. Chứng minh rằng: a3 - b3 + c3 + d3=3(a-b)(ab+dc)
2. a)Cho \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\)=0. Tính S= \(\frac{yz}{x^2}-\frac{xy}{z^2}-\frac{zx}{y^2}\)
b) Cho \(\frac{1}{x}+\frac{2}{y}+\frac{3}{z}\)=0. Tính S= \(\frac{9xy}{2z^2}+\frac{yz}{6x^2}+\frac{4zx}{3y^2}\)
3. A) Cho x, y, z khác 0 thỏa mãn: (x-y-z)2= x2+y2+z2
Chứng minh rằng: \(\frac{1}{x^3}-\frac{1}{y^3}-\frac{1}{z^3}\) = \(\frac{3}{xyz}\)
b) Cho x,y,z khác 0 thỏa mãn: (4x-3y+2z)2= 16x2+9y2+4z2.
Chứng minh rằng: \(\frac{1}{64x^3}-\frac{1}{27y^3}+\frac{1}{8z^3}\)=\(-\frac{1}{8xyz}\)
4. a)CMR: (A+B+C)3 - A3-B3-C3 = 3(A+B)(B+C)(C+A)
b) Cho P = (x+y+z)3-x3-y3-z3.
CMR:
-Nếu P =0 Thì(x11+y11)(y+z7)(z2019+x2019)=0
-Nếu x,y, z là các số nguyên cùng tính chẵn lẻ thì P chia hết cho 8, cho 24
cho a,b,c và x,y,z là các số thực khác 0 thỏa mãn \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1\). Tính \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) với a,b,c >0
1) cho các số a,b,c dương thỏa mãn \(a^3+b^3+c^3=3abc\). CMRa=b=c
2) cho x,y,z thỏa mãn xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Tính A=\(x^{2018}+2019^y-z^x\)
3) Cho \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}.CMR\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Bằng cách đưa về A2 \(\ge\) 0. CM:
a, x2 + y2 \(\ge\) 4xy với mọi x,y \(\in R\)
b, 2(x2 + y2 ) \(\ge\) ( x + y )2 với mọi x,y \(\in R\)
c, x2 - 2xy + 2y2 - y với mọi x,y \(\in R\)
d, \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với mọi x,y > 0
Bài 13: Biết \(a\ne-b;b\ne-c;c\ne-a\). CMR:
\(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}\)