Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đức
Xem chi tiết
Vũ Tiến Manh
3 tháng 10 2019 lúc 9:06

Áp dụng bdt cosi-schwar cho 3 số (\(\left(am+bn+cp\right)^2\le\left(a^2+b^2+c^2\right)\)\(\left(m^2+n^2+p^2\right)\)

với a=x,b=y\(\sqrt{2}\);c=z\(\sqrt{5}\);  m=\(\sqrt{11-2y^2},n=\sqrt{3-5z^2}\),\(p=\sqrt{2-x^2}\)

82\(\le\left(x^2+2y^2+5z^2\right)\left(11-2y^2+3-5z^2+1-x^2\right)\)  <=>64\(\le P\left(16-P\right)\)

<=>P2-16P+64\(\le0< =>\left(P-8\right)^2\le0\)  <=>P=8

Doãn Hoài Trang
Xem chi tiết
Vũ Thảo Vy
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Akai Haruma
25 tháng 11 2023 lúc 23:05

Lời giải:
Áp dụng BĐT AM-GM:
$2A=2x^2y^2(x^2+y^2)=xy.[2xy(x^2+y^2)]\leq \left(\frac{x+y}{2}\right)^2.\left(\frac{2xy+x^2+y^2}{2}\right)^2$

$\Leftrightarrow 2A\leq \frac{(x+y)^6}{16}=\frac{1}{16}$

$\Rightarrow A\leq \frac{1}{32}$
Vậy $A_{\max}=\frac{1}{32}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$

nguyễn tín
Xem chi tiết
Nguyễn Thùy Dương
Xem chi tiết
Bùi Nhất Duy
20 tháng 4 2017 lúc 9:03

Ta có :\(2x+yz=\left(x+y+z\right)x+yz=x^2+xy+xz+yz=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow\sqrt{2x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{\left(x+y\right)+\left(x+z\right)}{2}\)(bất đẳng thức cô si)

Cm tương tự :\(\sqrt{2y+xz}\le\dfrac{\left(y+x\right)+\left(y+z\right)}{2}\)

\(\sqrt{2z+xy}\le\dfrac{\left(z+y\right)+\left(z+x\right)}{2}\)

Do đó :P\(\le\dfrac{4\left(x+y+z\right)}{2}=2\left(x+y+z\right)=2\times2=4\)

Dấu "=" xảy ra khi :x=y=z=\(\dfrac{2}{3}\)

Vây giá trị lớn nhất của P=\(\sqrt{2x+yz}+\sqrt{2y+xz}+\sqrt{2z+xy}\) với x+y+z=2 và x,y,z\(\ge0\) là 4 khi x=y=z=\(\dfrac{2}{3}\)

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:09

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:10

\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)

\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)

\(P_{max}=1\) khi \(x=y=z=1\)

 Huyền Trang
Xem chi tiết
tthnew
15 tháng 3 2021 lúc 18:50

Ta có: 

\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Gợi ý. Dùng cái trên.

 Huyền Trang
15 tháng 3 2021 lúc 17:20

Mọi người giúp mình với a :))

๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa