\(\sqrt{2x-1}-2\sqrt{x-1}=-1\) giải pt giúp mik nha
\(\sqrt{x+2+2\sqrt{2x+1}}+\sqrt{x+2-2\sqrt{2x+1}}=2\)
Giúp mik giải pt nha mn. Thanks !
\(2x+\sqrt{x+\sqrt{x-\dfrac{1}{4}}}=2\) giải pt giúp mik nha
ĐKXĐ: \(1\ge x\ge\dfrac{1}{4}\)
\(\left(1\right)\Leftrightarrow\sqrt{x-\dfrac{1}{4}+2\sqrt{x-\dfrac{1}{4}}.\dfrac{1}{2}+\dfrac{1}{4}}=2-2x\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2-2x\)
\(\Leftrightarrow\sqrt{x-\dfrac{1}{4}}+\dfrac{1}{2}=2-2x\)
\(\Leftrightarrow\sqrt{x-\dfrac{1}{4}}=\dfrac{3}{2}-2x\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{9}{4}-6x+4x^2\)
\(\Leftrightarrow4x^2-7x+\dfrac{5}{2}=0\)
\(\Leftrightarrow4\left(x-\dfrac{5}{4}\right)\left(x-\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\left(L\right)\\x=\dfrac{1}{2}\left(TM\right)\end{matrix}\right.\)
giải giúp mik pt này nha thanks cần gấp
\(\sqrt[3]{14-x^3}\)+x=2(1+\(\sqrt{x^2-2x-1}\))
Giải pt:
a) \(\sqrt{2x^2-3}\)=\(\sqrt{4x-3}\)
b) \(\sqrt{2x-1}\)=\(\sqrt{x-1}\)
c) \(\sqrt{x^2-x-6}\)=\(\sqrt{x-3}\)
d) \(\sqrt{x^2-x}\)=\(\sqrt{3x-5}\)
Giúp em với, anh thịnh giúp em xíu á
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
Giúp mình giải 3 pt này nha:
1. \(x^2-2x=2\sqrt{2x-1}\)
2. \(\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}}\)
3. \(7x^2+7x=\sqrt{\frac{4x+9}{28}}\)
Mình cám ơn rất nhiều
giải hộ mik 2 pt với
9) \(\sqrt[3]{x+1}=2\) 10) \(\sqrt[3]{3-2x}=-2\)
\(9,\Leftrightarrow x+1=8\Leftrightarrow x=7\\ 10,\Leftrightarrow3-2x=-8\Leftrightarrow-2x=-11\Leftrightarrow x=\dfrac{11}{2}\)
9. \(\sqrt[3]{x+1}=2\left(ĐK:x\ge-1\right)\)
<=> x + 1 = 23
<=> x + 1 = 8
<=> x = 7 (TM)
10. \(\sqrt[3]{3-2x}=-2\left(ĐK:x\le\dfrac{3}{2}\right)\)
<=> 3 - 2x = (-2)3
<=> 3 - 2x = -8
<=> -2x = -11
<=> \(x=\dfrac{11}{2}\left(loại\right)\)
Vậy nghiệm của PT là \(S=\varnothing\)
1) Tìm x,y TM:
9^x-7^x=2^y
2) Giải pt:
\(\sqrt{x}+\sqrt{2-x}=\dfrac{2x}{\sqrt{2x-1}}\)
Mọi người giúp mình nhé =))
Mình làm câu 2 trước nhé:
đkxđ: \(\dfrac{1}{2}< x\le2\)
Áp dụng BĐT Bunyakovsky, ta có \(VT=\left(1.\sqrt{x}+1.\sqrt{2-x}\right)\)\(\le\sqrt{\left(1^2+1^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2-x}\right)^2\right]}\) \(=2\). ĐTXR \(\Leftrightarrow x=2-x\Leftrightarrow x=1\) (nhận). Vậy \(VT\le2\) (1)
Mặt khác, ta có \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-\left(2x-1\right)\ge0\) \(\Leftrightarrow\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)\ge0\). Do \(x+\sqrt{2x-1}>0\) nên điều này có nghĩa là \(x\ge\sqrt{2x-1}\) \(\Rightarrow\dfrac{x}{\sqrt{2x-1}}\ge1\) \(\Leftrightarrow\dfrac{2x}{\sqrt{2x-1}}\ge2\) hay \(VP\ge2\) (2). ĐTXR \(\Leftrightarrow x=1\) (nhận)
Từ (1) và (2) suy ra \(VT\le2\le VP\), do đó pt đã cho \(\Leftrightarrow VT=VP\) \(\Leftrightarrow x=1\)
Vậy pt đã cho có nghiệm duy nhất \(x=1\)
giúp mk vs mik cần gấp
giải pt:\(\left(\sqrt{1+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)2x
\(^{x^2-y^2\left(x+2\right)=1}\)với x,y nguyên
Giải pt sau:
\(\sqrt{x-2}+\sqrt{4-x}=2x^{^2}-5x-1\)
Giải giúp e vss ạ!!!!
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549