So sánh các số sau
290 và 530
2225 và 3150
2200 và 3150
So sánh: 2225 và 3150
2225 = 23.75 = (23)75 = 875
3150 = 32.75 = (32)75=975
8 < 9 ⇒ 875 < 975
Vậy : 2225 < 3150
Bài 1 : Tìm x, biết :
a. 2x = 16 b. 3x+1 = 9x
c. 23x+2 = 4x+5 d. 32x-1 = 243
Bài 2 : So sánh :
a. 2225 và 3150 b. 291 và 535 c. 9920 và 999910
Bài 3 : Chứng minh các đẳng thức :
a. 128 . 912 = 1816 b. 7520 = 4510 . 530 .
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
Bài 8: So sánh:
a) 2225 và 3150
b) 291 và 535
c) 9920 và 999910
Bài 9: Chứng minh đẳng thức:
a) 128 . 1816
b) 7520 = 4510 . 530
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Tìm các phân số tối giản khác 1 biết rằng tích của tử và mẫu bằng 3150 và phân số này viết được dưới dạng số thập phân hữu hạn
Gọi phân số cần tìm là \(\frac{a}{b}\left(a;b\in Z;b\ne0\right)\)
Ta có: 3150 = 2.32.52.7
Do \(\frac{a}{b}\) viết được dưới dạng số thập phân hữu hạn nên \(b⋮2\) hoặc \(b⋮5\) mà (a;b)=1 do \(\frac{a}{b}\) tối giản
\(\Rightarrow\begin{cases}a=2.3^2.7\\b=5^2\end{cases}\) hoặc \(\begin{cases}a=3^2.5^2.7\\b=2\end{cases}\)
\(\Rightarrow\begin{cases}a=126\\b=25\end{cases}\) hoặc \(\begin{cases}a=1575\\b=2\end{cases}\)
Vậy phân số cần tìm là \(\frac{126}{25};\frac{1575}{2}\)
Tìm các phân số tối giản có mẫu khác 1, biết rằng tích của tử và mẫu bằng 3150 và phân số này có thể viết dưới dạng số thập phân hữu hạn ?
Ta có :
\(3150=2.3^2.5^2.7\)
Phân số viết được dưới dạng số thập phân hữu hạn nên mẫu chỉ gồm nhân tử 2 và 5
Phân số là tối giản nên chỉ có \(3^2;5^2\) xuất hiện ở tử hoặc mẫu không có trường hợp cả 3 (hoặc 5) xuất hiện ở cả tử và mẫu.
Từ những điều trên ta có các phân số:
\(\dfrac{3^2.5^2.7}{2}=\dfrac{1575}{2};\dfrac{2.3^2.7}{5^2}=\dfrac{126}{25};\dfrac{3^2.7}{2.5^2}=\dfrac{63}{50}\)
Mình có cách biểu diễn khác nhé :
Lời giải :
Gọi phân số tối giản là : \(\dfrac{a}{b}\) , ƯCLN ( a ; b ) = 1
Ta có : a.b = 3150 = 2 . 32 . 52 . 7
b không có ước nguyên tố 3 và 7 ; \(b\ne1\) và ƯCLN ( a ; b ) = 1 nên \(b\in\left\{2;25;50\right\}\)
Vậy các phân số phải tìm là :
\(\dfrac{1575}{2}=787,5\) ; \(\dfrac{126}{25}=5,04\) ; \(\dfrac{63}{50}=1,26\)
Ta có :
3150=2.32.52.7
Phân số viết được dưới dạng số thập phân hữu hạn nên mẫu chỉ gồm nhân tử 2 và 5
Phân số là tối giản nên chỉ có 32;52
xuất hiện ở tử hoặc mẫu không có trường hợp cả 3 (hoặc 5) xuất hiện ở cả tử và mẫu.
Từ những điều trên ta có các phân số:
32.52.72=15752;2.32.752=12625;32.72.52=6350
Tìm các phân số tối giản có mẫu khác 1, biết rằng tích của tử và mẫu bằng 3150 và phân số này có thể viết được dưới dạng số thập phân hữu hạn
Mình sẽ tích cho nếu ai trả lời được ko cần nhanh hay chậm miễn là trả lời được
lớp 5 chưa có số thập phân hữu hạn mà bạn
Vì nếu 1 phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó được viết dưới dạng số thập phân hữu hạn.
Nên mẫu trên không thể chứa 7 và 3^2 vì nếu chứa 7 và 3^2 thì sẽ không viết được dưới dạng số thập phân hữu hạn, bởi đề bài ra là ﴾để phân số đó có thể viết được dưới dạng ps hữu hạn﴿
Tìm các phân số tối giản có mẫu khác 1, biết rằng tích của tử và mẫu bằng 3150 và phân số này có thể viết được dưới dạng số thập phân hữu han
Tìm 3 số tự nhiên liên tiếp biết rằng tổng của số lớn nhất và số nhỏ nhất bằng 3150.
tìm các phân số tối giản có mẫu khác 1 biết rằng tích của tử và mẫu bằng 3150 và phân số này có thể viết được dưới dạng số thập phân hữu hạn
giải thích ra nhé
Con tham khảo bài toán có cách giải tương tự tại link dưới đây nhé:
Câu hỏi của Vũ Linh Đan - Toán lớp 7 - Học toán với OnlineMath
Tìm các phân số tối giản có mẫu khác 1, biết rằng tích của tử và mẫu bằng 3150 và phân số này có thể viết được dưới dạng số thập phân hữu hạn
Ta có: \(3150=2.3^2.5^2.7\)
Phân số viết được dưới dạng số thập phân hữu hạn nên mẫu chỉ gồm nhân tử 2 và 5.
Phân số là tối giản nên chỉ có \(3^2;5^2\) xuất hiện ở tử hoặc mẫu, không có trường hợp 3 (hoặc 5) xuất hiên ở cả tử và mẫu.
Từ những điều trên, có các phân số:
\(\frac{3^2.5^2.7}{2}=\frac{1575}{2};\text{ }\frac{2.3^2.7}{5^2}=\frac{126}{25};\text{ }\frac{3^2.7}{2.5^2}=\frac{63}{50}\)
Vì nếu 1 phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó được viết dưới dạng số thập phân hữu hạn.
Nên mẫu trên không thể chứa 7 và 3^2 vì nếu chứa 7 và 3^2 thì sẽ không viết được dưới dạng số thập phân hữu hạn, bởi đề bài ra là (để phân số đó có thể viết được dưới dạng ps hữu hạn)
CHÚC BẠN MAY MẮN