\(\dfrac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\dfrac{1}{x-1}\right)\) (với \(x>1;x\ne2\))
rút gọn
C=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right)\div\dfrac{\sqrt{x}}{x-4}vớix>0,x\ne4\)
D=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x+1}}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}vớix>1,x\ne4,x\ne9\)
lm nhanhgiups mk nhé!Mk đang cần gấp!
c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
d)
Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)
\(=\dfrac{x+4}{2x-8}\)
Rút gọn biểu thức dạng chữ:
Q=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\left(x+\sqrt{x}\right)\) với x ≥0, x ≠1
A= \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}}{4-x}\right):\dfrac{\sqrt{x}+1}{x-4}\) với x ≥0, x ≠ 4
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\right):\dfrac{1}{x+6\sqrt{x}+9}\) với x ≥ 0, x ≠ 9
Hộ vs ạ
1.
\(Q=\left[\frac{\sqrt{x}+2}{(\sqrt{x}+1)^2}-\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right].\sqrt{x}(\sqrt{x}+1)\)
\(=\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}-2)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}(\sqrt{x}+2)(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2x}{x-1}\)
2.
\(A=\left[\frac{\sqrt{x}+2-(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{4\sqrt{x}}{x-4}\right].\frac{x-4}{\sqrt{x}+1}\)
\(=\left(\frac{4}{x-4}-\frac{4\sqrt{x}}{x-1}\right).\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{x-4}.\frac{x-4}{\sqrt{x}+1}=\frac{4(1-\sqrt{x})}{\sqrt{x}+1}\)
3.
\(A=\left[\frac{\sqrt{x}(\sqrt{x}-3)+2\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{3x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}\right]:\frac{1}{(\sqrt{x}+3)^2}\)
\(=\frac{3\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}+3)}.(\sqrt{x}+3)^2=\frac{3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}(\sqrt{x}+3)^2=3(\sqrt{x}+3)\)
1) \(\sqrt{2-x^2}+\sqrt{2-\dfrac{1}{x^2}}=4-\left(x+\dfrac{1}{x}\right)\)
2) \(x\sqrt{x}+\sqrt{12-x}=2\sqrt{3\left(x^2+1\right)}\)
3) \(\left(x+8\sqrt{x}+4\right)\left(x-\sqrt{x}+4\right)=36x\)
1. ĐKXĐ:...
\(8-2x-\dfrac{2}{x}-2\sqrt{2-x^2}-2\sqrt{2-\dfrac{1}{x^2}}=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\dfrac{1}{x^2}-\dfrac{2}{x}+1\right)+\left(2-x^2-2\sqrt{2-x^2}+1\right)+\left(2-\dfrac{1}{x^2}-2\sqrt{2-\dfrac{1}{x^2}}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\dfrac{1}{x}-1\right)^2+\left(\sqrt{2-x^2}-1\right)^2+\left(\sqrt{2-\dfrac{1}{x^2}}-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\dfrac{1}{x}-1=0\\\sqrt{2-x^2}-1=0\\\sqrt{2-\dfrac{1}{x^2}}-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
2.
ĐKXĐ:...
Ta có:
\(VT=x\sqrt{x}+1.\sqrt{12-x}\le\sqrt{\left(x^2+1\right)\left(x+12-x\right)}=2\sqrt{3\left(x^2+1\right)}\)
Dấu "=" xảy ra khi và chỉ khi: \(x\sqrt{12-x}=\sqrt{x}\)
\(\Leftrightarrow x^3-12x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6-\sqrt{35}\\x=6+\sqrt{35}\end{matrix}\right.\)
3. ĐKXĐ: ...
Với \(x=0\) ko phải nghiệm
Với \(x>0\) pt tương đương:
\(\left(\dfrac{x+8\sqrt{x}+4}{\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}+4}{\sqrt{x}}\right)=36\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{4}{\sqrt{x}}+8\right)\left(\sqrt{x}+\dfrac{4}{\sqrt{x}}-1\right)=36\)
Đặt \(\sqrt{x}+\dfrac{4}{\sqrt{x}}-1=t\ge3\)
\(t\left(t+9\right)=36\Leftrightarrow t^2+9t-36=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-12\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\dfrac{4}{\sqrt{x}}-1=3\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow x=4\)
Tìm x
a)\(\sqrt{x-1}=2\left(x\ge1\right)\)
b)\(\sqrt{3-x}=4\left(x\le3\right)\)
c)\(2.\sqrt{3-2x}=\dfrac{1}{2}\left(x\le\dfrac{3}{2}\right)\)
d)\(4-\sqrt{x-1}=\dfrac{1}{2}\left(x\ge1\right)\)
e)\(\sqrt{x-1}-3=1\)
f)\(\dfrac{1}{2}-2.\sqrt{x+2}=\dfrac{1}{4}\)
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
Rút gọn
a) với x>0 , x\(\ne\)1
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\)
b) với a>0,a\(\ne\)4
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
c)\(\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\) với a>0 ,a\(\ne\)1
d)\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\) với x>1
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}+\dfrac{6-7\sqrt{x}}{x-4}\right)\left(\sqrt{x}+2\right)\)
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
giúp mình với ạ!mình đang cần gấp
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
3. ĐKXĐ: $a\geq 0; a\neq 1$
\(C=\frac{\sqrt{a}(\sqrt{a}+1)-\sqrt{a}}{(\sqrt{a}+1)(\sqrt{a}-1)}:\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}\)
\(\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}:\frac{1}{\sqrt{a}-1}=\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}.(\sqrt{a}-1)=\frac{a}{\sqrt{a}+1}\)
Giải phương trình \(\dfrac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\dfrac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\dfrac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
\(\left(\dfrac{2}{2-\sqrt{x}}+\dfrac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}-\dfrac{4x}{x-4}\right)\)
\(\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right).\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\) RÚT GỌN
\(\left(\dfrac{2}{2-\sqrt{x}}+\dfrac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}-\dfrac{4x}{x-4}\right)\) (ĐK: \(x\ne4;x>0\))
\(=\left[\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\dfrac{-2\sqrt{x}+\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\left[\dfrac{-\left(\sqrt{x}+2\right)^2+\left(\sqrt{x}-2\right)^2-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-x-4\sqrt{x}-4+x+4\sqrt{x}+4-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{-4x}\)
\(=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{-4x}\)
\(=-\dfrac{3\sqrt{x}+6-x-2\sqrt{x}}{4x}\)
\(=-\dfrac{\sqrt{x}-x+6}{4x}\)
\(\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\) (ĐK: \(x\ge0;x\ne1;x\ne\dfrac{1}{9}\))
\(=\left[\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP