CMR: a/2a+b+c + b/2b+a+c + c/2c+a+b <=3/4 (a,b,c>0)
ai giải cách dễ nhất càng tốt nha
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giúp mình càng sớm càng tốt nhe các bạn
cho a,b,c là 3 cạnh tam giác, cmr:
\(\dfrac{3a+b}{2a+c}+\dfrac{3b+c}{2b+a}+\dfrac{3c+a}{2c+b}\ge4\)
a, Cho a,b,c > 0. cmr : P = 1/a+3b + 1/b+3c + 1/c+3a >= 1/a+2b+c + 1/b+2c+a + 1/c+2a+b
b, Cho a,b > 0 : a^2 + b^2 = 18 . Tìm GTNN của biểu thức : Q = 2a + 2b + a^2/b + b^2/a
Ai làm nhanh và đúng nhất mk tick cho nha
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
a,b,c>0.CMR a^2/(2a+b)(2a+c)+b^2/(2b+c)(2b+a)+c^2/(2c+a)(2c+b) >1/3
a,b,c>0 cmr
a/(b+2c)+b/(c+2a)+c/(a+2b)>=b/(b+2a)+c/(c+2b)+a/(a+2c)
a, a,b,c>0. CMR:\(\dfrac{ab}{a+b+2c}+\dfrac{bc}{b+c+2a}+\dfrac{ac}{a+c+2b}\le\dfrac{a+b+c}{4}\)
b, a,b,c>0. CMR:\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)
Dấu $"="$ khi $a=b=c$
cho a b c là độ dài 3 cạnh của 1 tam giác
CMR \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)>0
Bạn nào giải nhanh đúng mình tick cho nha
A = 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4
<=> A = 4a2c2 − ( a4+b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2 )
<=> A = 4a2c2 − ( a2 − b2 + c2)2
<=> A = ( 2ac + a2 − b2 + c2 ) ( 2ac − a2 + b2 − c2 )
<=> A = [ (a+c)2 − b2 ] ( b2 − (a−c)2)
<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\
a+b+c>0
a+c−b>0
b+a−c>0
b−a+c>
=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
A>0 (Dpcm)
Giúp mk vs mk đang cần gấp
Cho 2x+2z-x/a=2z+2x-y/b=2x+2y-z/c.Với a,b,c khác 0 ;2a+2b khác c,2b+2c khác a,2a+2c khác b
Cmr: x/2b+2c-a=y/2c+2a-b=z/2a+2b-c
Ta có : \(\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c}\)(sửa lại đề) (1)
=> \(\frac{2y+2z-x}{a}=\frac{4b+4x-2y}{2b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4z+4x-2y+4x+4y-2z-2y-2z+x}{2b+2c-a}=\frac{9x}{2b+2c-a}\)(dãy tỉ số bằng nhau) (2)
Từ (1) => \(\frac{4y+4z-2x}{2a}=\frac{2z+2x-y}{b}=\frac{4x+4y-2z}{2c}\)
= \(\frac{4x+4y-2z+4y+4z-2x-2z-2x+y}{2c+2a-b}=\frac{9y}{2c+2a-b}\)(dãy tỉ số bằng nhau) (3)
Từ (1) có : \(\frac{4y+4z-2x}{2a}=\frac{4z+4x-2y}{2b}=\frac{2x+2y-z}{c}=\frac{4y+4z-2x+4z+4x-2y-2x-2y+z}{2a+2b-c}\)\(=\frac{9z}{2a+2b-c}\)(dãy tỉ số bằng nhau) (4)
Từ (2) ; (3) ; (4) => điều phải chứng minh
Cho 0<a,b,c<1.CMR:
2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a
Cho a, b, c là độ dài 3 cạnh tam giác. CMR:\(a^2b+b^2c+c^2a+a^2c+c^2b+b^2a-a^3-b^3-c^3>0\)
TA có \(a^3+b^3+c^3\ge3abc\Rightarrow-a^3-b^3-c^3\le-3abc\)
Cần chứng minh \(a^2b+b^2c+c^2a+ca^2+bc^2+ab^2-3abc\ge0\)
\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(a+c\right)-3abc\)
\(\ge abc+abc+abc-3abc=0\)