Tìm số dư cuối cùng của phép chia 2 đa thức:
\(\left(1+x^{1992}+x^{1993}+x^{1994}+x^{1995}\right):\left(1-x^2\right)\)
Tìm số dư trong phép chia của \(f\left(x\right)=x^{1994}+x^{1993}+1\) cho \(g\left(x\right)=x^2+x+1\)
Tìm số dư trong phép chia của \(f\left(x\right)=x^{1994}+x^{1993}+1\) cho \(g\left(x\right)=x^2+x+1\)
\(f\left(x\right)=x^{1992}.\left(x^2+x+1\right)-\left(x^{1992}-1\right)\)
\(x^{1992}.\left(x^2+x+1\right)⋮x^2+x+1\) Ta xét x^1992-1
Có \(x^{1992}-1=\left(x^3\right)^{664}-1^{664}⋮x^3-1=\left(x-1\right)\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
Vậy dư của phép chia trên là 0000000
Không thực hiện phép tính chia, tìm đa thức dư trong phép chia
\(\left(x^{10}+x^9+x^8+...+x+1\right):\left(x^2-1\right)\)
Tìm đa thức \(P\left(x\right)\), biết rằng đa thức \(P\left(x\right)\) chia cho đa thức \(x-2\) có số dư là : 35. Đa thức \(P\left(x\right)\) chia cho đa thức \(x+1\) có số dư là 5. Đa thức \(P\left(x\right)\) chia cho đa thức \(2x^2+5x+2\) có thương là \(x\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ! Em cám ơn mọi người nhiều ạ!
1.Cho A=\(\dfrac{2x+1}{\left(x-4\right)\left(x-3\right)}-\dfrac{x+3}{x-4}+\dfrac{2x+1}{x-3}\)
a.Rút gọn biểu thức A
b.Tính giá trị của A biết \(x^2+20=9x\)
2.Tìm đa thức thương vfa đa thức dư trong phép chia:\(\left(2x^3-7x^2+13x+2\right):\left(2x-1\right)\)
3.Cho hình thang ABCD có góc A = góc D = 90 độ,AB=AD=\(\dfrac{1}{2}\)CD.Gọi M là trung điểm của CD.
a.Tứ giác ABCM;ABCD là hình gì?Vì sao?
b.Cho AC cắt BD tại E, AM cắt BD tại O.Gọi N là trung điểm của MC.C/m tứ giác DOEN là hình thang cân.
c.Kẻ DI vuông góc vs AC (I thuộc AC) DI cắt AM tại H.Gọi K là giao điểm của AM và DE.C/m DH=DK
(vẽ hình giúp e vs ạ, e cảm ơn)
Cho 2 đa thức \(P\left(x\right);Q\left(x\right)\) thỏa mãn \(P\left(x^3\right)+x.Q\left(x^3\right)\) chia hết cho \(x^2+x+1\). Chứng minh rằng đa thức \(P\left(x\right)\) chia hết cho đa thức \(x-1\).
P/s: Em xin phép nhờ quý thầy cô giáo cùng các bạn yêu toán giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều ạ!
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Tìm đa thức dư trong phép chia \(\left(x^{1234}-1\right)\) cho \(\left(x^2+1\right)\left(x^2-x+1\right)\)
Câu 1 :
Phân tích đa thức thành nhân tử
A = \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Câu 2 :Tìm dư trong phép chia đa thức
f ( x ) =\(x^{1994}+x^{1993}+1\) cho \(x^2\)+x + 1 .
x1994+x1993+1:x2+x+1
=(x1994+x1993:x2+x)+1
=x996+1
vậy dư là x996+1
chắc zậy
Câu 1 tự lm.
Câu 2:
Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)
= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)
= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)
= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)
= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)
= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)
Vì \(x^2+x+1\) \(⋮\) \(x^2+x+1\)
=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0
Tìm đa thức dư trong phép chia
\(\left(x^{54}+x^{45}+x^{36}+...+x^9+1\right):\left(x^2-1\right)\)
Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .
Ta có :
\(\left(x^{54}+x^{45}+...+x^9+1\right)\)
\(=\left(x^2-1\right).Q+\left(ax+b\right)\)
Lần lượt ta có giá trị riêng là :
\(x=1;x=-1\)
\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)
Vậy đa thức dư cần tìm là : \(3x+4\)
Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)
Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương
Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)
Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)
Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)
Vậy số dư của phép chia trên là \(3x+4\)