Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Cường
Xem chi tiết
Đức Cường
Xem chi tiết
Trần Quốc Khanh
11 tháng 2 2020 lúc 11:21

\(f\left(x\right)=x^{1992}.\left(x^2+x+1\right)-\left(x^{1992}-1\right)\)

\(x^{1992}.\left(x^2+x+1\right)⋮x^2+x+1\) Ta xét x^1992-1

Có \(x^{1992}-1=\left(x^3\right)^{664}-1^{664}⋮x^3-1=\left(x-1\right)\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)

Vậy dư của phép chia trên là 0000000

Khách vãng lai đã xóa
BHQV
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2023 lúc 7:51

  loading...  

loading...  loading...  

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 12:16

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

Cầm Dương
Xem chi tiết
Son Pila
Xem chi tiết
nguyệt nguyễn
5 tháng 6 2017 lúc 18:43

x1994+x1993+1:x2+x+1

=(x1994+x1993:x2+x)+1

=x996+1

vậy dư là x996+1

chắc zậy bucminh

Mỹ Duyên
5 tháng 6 2017 lúc 20:44

Câu 1 tự lm.

Câu 2:

Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)

= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)

= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)

= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)

= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)

= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)

= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)

\(x^2+x+1\) \(⋮\) \(x^2+x+1\)

=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
18 tháng 7 2018 lúc 21:09

Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .

Ta có :

\(\left(x^{54}+x^{45}+...+x^9+1\right)\)

\(=\left(x^2-1\right).Q+\left(ax+b\right)\)

Lần lượt ta có giá trị riêng là :

\(x=1;x=-1\)

\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)

Vậy đa thức dư cần tìm là : \(3x+4\)

Đinh Đức Hùng
18 tháng 7 2018 lúc 21:10

Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)

Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương 

Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)

Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)

Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)

Vậy số dư của phép chia trên là \(3x+4\)