x1994+x1993+1:x2+x+1
=(x1994+x1993:x2+x)+1
=x996+1
vậy dư là x996+1
chắc zậy
Câu 1 tự lm.
Câu 2:
Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)
= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)
= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)
= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)
= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)
= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)
Vì \(x^2+x+1\) \(⋮\) \(x^2+x+1\)
=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0