Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Son Pila

Câu 1 :

Phân tích đa thức thành nhân tử

A = \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

Câu 2 :Tìm dư trong phép chia đa thức

f ( x ) =\(x^{1994}+x^{1993}+1\) cho \(x^2\)+x + 1 .

nguyệt nguyễn
5 tháng 6 2017 lúc 18:43

x1994+x1993+1:x2+x+1

=(x1994+x1993:x2+x)+1

=x996+1

vậy dư là x996+1

chắc zậy bucminh

Mỹ Duyên
5 tháng 6 2017 lúc 20:44

Câu 1 tự lm.

Câu 2:

Ta có: \(f\left(x\right)=x^{1994}+x^{1993}+1\)

= \(\left(x^{1994}-x^2\right)+\left(x^{1993}-x\right)+\left(x^2+x+1\right)\)

= \(x^2\left(x^{1992}-1\right)+x\left(x^{1992}-1\right)+\left(x^2+x+1\right)\)

= \(\left[\left(x^3\right)^{664}-\left(1^3\right)^{664}\right]\left(x^2+x\right)+\left(x^2+x+1\right)\)

= \(\left(x^3-1^3\right)\left(x^{1989}+x^{1986}+...+x^3+1\right)+\left(x^2+x+1\right)\)

= \(\left(x-1\right)\left(x^2+x+1\right)\left(x^{1989}+x^{1986}+..+1\right)+\left(x^2+x+1\right)\)

= \(\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^{1989}+..+1\right)+1\right]\)

\(x^2+x+1\) \(⋮\) \(x^2+x+1\)

=> \(f\left(x\right)\) \(⋮\) \(x^2+x+1\) hay số dư trong phép chia là 0


Các câu hỏi tương tự
Thư Nguyễn Nguyễn
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
hải anh
Xem chi tiết
tỉnh tiền tỉ
Xem chi tiết
Nguyễn Linh Nhi
Xem chi tiết
Vương Hàn
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Trầm Mặc
Xem chi tiết
Minh Hoang Hai
Xem chi tiết