Những câu hỏi liên quan
Hung Trinh Ngoc
Xem chi tiết
Thắng Nguyễn
29 tháng 9 2017 lúc 0:00

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)

\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)

Hung Trinh Ngoc
29 tháng 9 2017 lúc 17:29

thanks

Vo Trong Duy
Xem chi tiết
Kiệt Nguyễn
12 tháng 6 2020 lúc 13:53

Theo BĐT Bunyakovsky, ta có: \(\frac{7}{2a+b+c}=\frac{7^2}{7\left(2a+b+c\right)}=\frac{\left(2+1+4\right)^2}{2\left(a+3b\right)+\left(b+3c\right)+4\left(c+3a\right)}\)

\(\le\frac{2^2}{2\left(a+3b\right)}+\frac{1^2}{\left(b+3c\right)}+\frac{4^2}{4\left(c+3a\right)}\)

\(=\frac{2}{a+3b}+\frac{1}{b+3c}+\frac{4}{c+3a}\)(1)

Hoàn toàn tương tự: \(\frac{7}{2b+c+a}\le\frac{2}{b+3c}+\frac{1}{c+3a}+\frac{4}{a+3b}\)(2); \(\frac{7}{2c+a+b}\le\frac{2}{c+3a}+\frac{1}{a+3b}+\frac{4}{b+3c}\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(7\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\le7\left(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\right)\)

hay \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
Nguyễn Anh Quân
3 tháng 12 2017 lúc 20:52

Áp dụng bđt 1/a+1/b >= 4/a+b

Xét 1/a+3b + 1/b+2c+a >= 4/2a+4b+2c = 2/a+2b+c

Tương tự : 1/b+3c + 1/c+2a+b >= 4/2a+2b+4c = 2/a+b+2c

1/c+3a + 1/a+2b+c >= 4/4a+2b+2c = 2/2a+b+c

=> VT + VP >= 2VP

=> VT >= VP ( ĐPCM)

k mk nha

tth_new
13 tháng 6 2020 lúc 20:33

Chuyển vế và quy đồng, nó tương đương:

sigma(((754*a + 17*c)*(a + b - 2*c)^4)/1053 + ((416*a^2*b + 367*c^3)*(a - b)^2)/13 + (64*a^2*c*(a + b - 2*c)^2)/3 + (49*c*(a + b - c)^2*(a + b - 2*c)^2)/39) >=0

\(\Sigma\frac{\left(754a+17c\right)\left(a+b-2c\right)^4}{1053}+\Sigma\frac{\left(416a^2b+367c^3\right)\left(a-b\right)^2}{13}+\Sigma\frac{64a^2c\left(a+b-2c\right)^2}{3}+\Sigma\frac{49c\left(a+b-c\right)^2\left(a+b-2c\right)^2}{39}\ge0\)

PS: Dò lại xem giữa cái đoạn công thức toán và đoạn text của mình có lỗi gì không nhé. Đoạn text chắc chắn đúng rồi nhưng đoạn thức toán mình đánh có thể có sai sót.

Khách vãng lai đã xóa
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết

Violympic toán 8

Khách vãng lai đã xóa

Xin ngoại lệ ạ ( Ko liên quan đến câu hỏi)

Violympic toán 8

Khách vãng lai đã xóa
Phác Chí Mẫn
Xem chi tiết
Akai Haruma
2 tháng 1 2020 lúc 23:36

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{bc}{\sqrt{5abc(3a+2b)}}+\frac{ac}{\sqrt{5abc(3b+2c)}}+\frac{ab}{\sqrt{5abc(3c+2a)}}\geq \frac{3}{5}(*)\)

Áp dụng BĐT AM-GM:

\(5abc(3a+2b)=5ab.(3ac+2bc)\leq \left(\frac{5ab+3ac+2bc}{2}\right)^2\)

\(\Rightarrow \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \frac{2bc}{5ab+3ac+2bc}=\frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\)

Hoàn toàn tương tự với các phân thức còn lại, cộng theo vế ta suy ra:

\(\sum \frac{bc}{\sqrt{5abc(3a+2b)}}\geq \sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}(1)\)

Áp dụng BĐT Cauchy_Schwarz và AM-GM:

\(\sum \frac{2(bc)^2}{5ab^2c+3abc^2+2b^2c^2}\geq 2.\frac{(bc+ab+ac)^2}{2[(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)]}=\frac{(ab+bc+ac)^2}{(ab)^2+(bc)^2+(ca)^2+4abc(a+b+c)}\)

\(=\frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+2abc(a+b+c)}\geq \frac{(ab+bc+ac)^2}{(ab+bc+ac)^2+\frac{2}{3}(ab+bc+ac)^2}=\frac{3}{5}(2)\)

Từ $(1);(2)$ suy ra $(*)$ đúng. BĐT được chứng minh.

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Trần Quốc Khanh
25 tháng 3 2020 lúc 15:55

Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)

Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)

a/Áp dụng (1) có

\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:

\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)

Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)

b/Áp dụng (1) có:

\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)

Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)

\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)

Cộng (5),(6) và (7) có:

\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)

Khách vãng lai đã xóa
Tuyển Trần Thị
Xem chi tiết
Trần Hữu Ngọc Minh
8 tháng 11 2017 lúc 16:46

áp dụng  BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\)

\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng các BĐt trên theo vế ta được:

\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\left(đpcm\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

trần thành đạt
2 tháng 12 2017 lúc 21:55

giúp mình vs  CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

Đinh Hoàng Gia Bảo
27 tháng 3 2020 lúc 13:58

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Khách vãng lai đã xóa
Diệu Anh Bùi
Xem chi tiết
Nguyễn Hoàng
19 tháng 2 2020 lúc 22:39

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
Dưa Hấu
Xem chi tiết
pham trung thanh
Xem chi tiết
vũ tiền châu
4 tháng 11 2017 lúc 18:24

Áp dụng bất đẳng thức Svác xơ ngược ta có 

\(\frac{1}{2a+3b+3c}=\frac{1}{a+b+a+c+2\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{2}{b+c}\right)\)

tương tự mấy cái kia rồi cộng vào 

Vũ Phương Mai
4 tháng 11 2017 lúc 20:04

Thu Mai ê, phải là\(\frac{1}{9}\) chứ, 3 số đấy

Vũ Thu Mai
5 tháng 11 2017 lúc 14:44

con bé này ngố, à, dùng svác sơ 4 số hây