Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 1 2022 lúc 13:16

Pt có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Rightarrow1.\left(m-1\right)< 0\Rightarrow m< 1\)

Mặt khác theo Viet: \(x_1+x_2=-2< 0\)

\(\Rightarrow\) Nghiệm âm có giá trị tuyệt đối lớn hơn

Lam Vu
Xem chi tiết
Vương Hương Giang
8 tháng 3 2022 lúc 12:34

Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

ILoveMath đã xóa
Nguyễn Quang Huy
Xem chi tiết
Nguyễn Linh Chi
1 tháng 4 2019 lúc 17:25

b) 

+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1

+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn

Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)

=> m khác 0 phương trình (1) có hai ngiệm phân biệt

Vậy pt (1) luôn có nghiệm với mọi giá trị của m

c)  Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại

Với m khác 0 

Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)

Khi đó áp dụng định lí Vi-et:

\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)

Mạnh
Xem chi tiết
Nguyễn Trần Minh Anh
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 15:13

Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:

$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.

Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)

Khi đó, 4 nghiệm phân biệt là:

$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$

Hiển nhiên $x_1, x_3>-4$ 

Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$

$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$

$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:

\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)

\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)

Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)

 

Huỳnh Hướng Ân
Xem chi tiết
oOo lê ngân oOo
Xem chi tiết
Nguyễn Tuấn Anh
28 tháng 4 2016 lúc 22:55

x2+2(m-1)x+m2+1=0 (*) Để phương trình (*) có 2 nghiệm phân biệt khi: \(\Delta>0\) hay \(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Leftrightarrow m<0\left(I\right)\)

Theo giả thiết giả sử ta có: \(x_1>1,x_2<1\Rightarrow\left(x_1-1\right)\left(x_2-1\right)<0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\) 

Theo Vi-et ta có: \(x_1x_2=m^2+1;x_1+x_2=-2\left(m-1\right)\) Thay vào (II) Ta có: \(m^2+1+2\left(m-1\right)+1<0\Leftrightarrow m\left(m+2\right)<0\)
Hay -2<m<0 Thỏa mãn cả (I).
Vậy -2<m<0 Thì phương trình (*) thỏa mãn điều kiện bài ra

ngô thế trường
22 tháng 11 2016 lúc 18:12

áp dụng là ra ngay

Pham  Nguyen Hoang  Lam
12 tháng 1 2017 lúc 20:35

bài này bạn áp dụng in vét nha dúng thì k

mình đổi tên nick này cò...
Xem chi tiết