cmr:[76+75-74]chia hết cho 11
B=76 75-74 chia hết cho 11
xâu phi nga7675-74=7601=691. 11 chia hết cho 11
4/ Chứng minh rằng :
a. 76 +75 – 74 chia hết cho 11 . bạn nào giúp mình với (giải thích cho mình hiểu luôn nha các bạn)
\(a,=7^4\left(7^2+7-1\right)=7^4\cdot55=7^4\cdot5\cdot11⋮11\)
\(7^6+7^5-7^4=7^4\cdot55⋮11\)
4/ Chứng minh rằng :
a. 76 +75 – 74 chia hết cho 11 .bạn nào giúp mk với ạ .giải thích cho mình hiểu luôn với ạ mình tick ✔cho
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮11\)
5) Chứng minh rằng:
a) 76 + 75 – 74 chia hết cho 55 b) 165 + 215 chia hết cho 33
c) 817 – 279 – 913 chia hết 405
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
a) 7^0 = 0 ; 7^1=7 ; 7^2 = 49 ; 7^3 = 343 ; 7^4=2401 ; 7^5 = 16807 ;.....
⟹ 7 có số mũ là số chẵn thì thường có chữ số tận cùng là 1,9
7^6 =......9 ; 7^5=......7 ; 7^4=......1
⟹ ....9 +.....7-....1=5
mà 55=5.11⟹ 7^6 +7^5-7^4 : 5 thì : 55
mà số chia hết cho 5 thì có tận cùng là 0,5 .phéptính 7^6+7^5=7^4 có tận cùng là 5 ⟹ 7^6+7^5-7^4 : 55
vậy 7^6+7^5-7^4 : 55
CMR A=776+775+774 chia het cho 57
A = 776 + 775 + 774
= 774(72 + 7 + 1)
= 774(49 + 7 + 1)
= 774 . 57
Vậy A chia hết cho 57
\(A=7^{76}+7^{75}+7^{74}=7^{74}\cdot7^2+7^{74}\cdot7+7^{74}=7^{74}\left(7^2+7+1\right)=57\cdot7^{74}⋮57\)
chứng minh rằng 7^76 + 7^75 +7^74 chia hết cho 5^7
làm nhanh mik sẽ tick
Chứng minh rằng: 7 6 + 7 5 − 7 4 ⋮ 11
Sơ đồ con đường |
Lời giải chi tiết |
|
Xét 7 6 + 7 5 − 7 4 = 7 4 . 7 2 + 5 − 1 = 7 4 .55 Áp dụng tính chất chia hết của một tích: 55 ⋮ 11 ⇒ 7 4 .55 ⋮ 11 ⇒ 7 6 + 7 5 − 7 4 ⋮ 11 |
Chứng minh rằng 7 6 + 7 5 - 7 4 ⋮ 11
ông an có 76 quả trứng gà và 75 quả trứng vịt.trên đường đi đã làm vỡ mất 74 quả trứng gồm cả hai loại . Hỏi ông an có thể chia hết cho 55 hộ gia đình không
Số quả trứng ông An còn lại là:
\(A=7^6+7^5-7^4\)
\(A=7^6+7^5-7^4\)
\(=7^4\cdot7^2+7^4\cdot7-7^4\cdot1\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\)
Do đó: Số trứng còn lại có thể chia hết cho 55 hộ gia đình
số trứng còn lại là :
(76+75-74):55
= 74 . ( 72 + 7 -1 ):55
= 74 . 55 : 55
=74
=> số trứng còn lại có thể chia hết cho 55 hộ
Cho A = 7 + 72 + 73 + 74 + 75 + 76 +77 + 78 chứng tỏ tổng A chia hết cho 5. Hộ mik với ạ mik sắp thi r mà bài này cô mới gửi mik ko bt làm ai giúp mik nhanh vs ạ. C.ơn nhìu
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.40 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm