Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinh Thuy Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 13:57

a) Ta có: \(\dfrac{x^2+2x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\)

\(=\dfrac{x+1}{x}\)

b) Ta có: \(\dfrac{x^2-4x+3}{x^2-x}\)

\(=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)

\(=\dfrac{x-3}{x}\)

Xem chi tiết
vvvvvvvv
Xem chi tiết
Trần Nhật Quỳnh
17 tháng 1 2021 lúc 20:09

x2 > 2( x - 1 )

<=> x2 - 2x + 2 > 0

<=> ( x2 - 2x + 1 ) + 1 > 0

<=> ( x - 1 )2 + 1 > 0 ( luôn đúng ∀ x ∈ R )

Vậy bđt ban đầu được chứng minh

fcfgđsfđ
Xem chi tiết
Phong
10 tháng 8 2023 lúc 8:45

Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)

Nên: \(x^2-x+1>0\)

Gấuu
10 tháng 8 2023 lúc 8:46

\(x^2-x+1\)

\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )

\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Mà:\left(x-\dfrac{1}{2}\right)^2>0\forall x\in R\\ Vậy:\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ Vậy:x^2-x+1>0\forall x\in R\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2019 lúc 12:07

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Trương Ngọc Anh Tuấn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2018 lúc 10:16

x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0

Phạm Thị Thu Hiền
Xem chi tiết
Lê Thị Hướng
Xem chi tiết
Trần Thị Khiêm
16 tháng 8 lúc 8:35
Đề bài:

Xét các số nguyên \(x_{1} , x_{2} , \ldots , x_{5}\) thỏa mãn

\(\left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots \left(\right. 1 + x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } \left(\right. 1 - x_{1} \left.\right) \left(\right. 1 - x_{2} \left.\right) \hdots \left(\right. 1 - x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } x .\)

Chứng minh rằng

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)

Lời giải:

Gọi

\(P = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) , Q = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Theo đề: \(P = Q = x\).

Bước 1: Xét tích \(P Q\)

\(P Q = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) \left(\right. 1 - x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)

Bước 2: Sử dụng giả thiết \(P = Q\)

Từ \(P = Q\), suy ra:

\(\prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Chuyển vế:

\(& \prod_{i = 1}^{5} \frac{1 + x_{i}}{1 - x_{i}} = 1. & & (\text{1})\)

Bước 3: Phân tích trường hợpNếu có một \(x_{i} = 1\), thì vế phải (1) có mẫu số bằng 0 → đẳng thức chỉ đúng khi đồng thời tử số cũng bằng 0, tức là có một \(x_{j} = - 1\).
Trong trường hợp này, trong tích \(P = \left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots\), sẽ có một thừa số bằng 0.
\(x = 0\).
Do đó \(x x_{1} x_{2} \hdots x_{5} = 0\).Nếu có một \(x_{i} = - 1\), tương tự, \(x = 0\).
⇒ Kết quả đúng.Nếu không có số nào bằng \(\pm 1\):
Khi đó (1) hoàn toàn xác định.
Lưu ý rằng \(\frac{1 + x_{i}}{1 - x_{i}}\) là một phân số không bằng 0.
Tích của 5 phân số bằng 1.
⇒ Có thể xảy ra, nhưng ta cần liên hệ với tích \(P Q\):
\(P Q = P^{2} = x^{2} = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)
Nếu không có số nào bằng \(\pm 1\), thì mỗi \(1 - x_{i}^{2} \neq 0\). Vế phải khác 0, suy ra \(x \neq 0\).
Nhưng khi đó \(x^{2} = \prod \left(\right. 1 - x_{i}^{2} \left.\right)\).
Nghĩa là \(x\) chia hết cho tích \(\prod x_{i}\) (do đồng dư mod \(x_{i}\), lập luận chia hết)…
Kết quả là hoặc \(x = 0\) hoặc một trong các \(x_{i} = 0\).
⇒ Trong cả hai trường hợp, \(x x_{1} x_{2} \hdots x_{5} = 0\).Kết luận:

Dù xảy ra trường hợp nào thì ta luôn có:

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 12 2017 lúc 16:32

Do x2≥ 0 ∀ x ≠ ±1 nên Q=x2 + 1 ≥ 1 ∀ x ≠ ±1