Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nam Khánh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 7 2021 lúc 19:05

\(A=\dfrac{1}{16}c^2-9c+10=\dfrac{1}{16}\left(x-72\right)^2-314\ge-314\)

\(A_{min}=-314\) khi \(c=72\)

\(B=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)

\(B_{min}=1\) khi \(\left\{{}\begin{matrix}d=15\\e=5\end{matrix}\right.\)

\(C=4x^4+12x^2+11\)

Do \(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\) ; \(\forall x\Rightarrow C\ge11\)

\(C_{min}=11\) khi \(x=0\)

Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 19:06

a) Ta có: \(\dfrac{1}{16}c^2-9c+10\)

\(=\left(\dfrac{1}{4}c\right)^2-2\cdot\dfrac{1}{4}c\cdot18+324-314\)

\(=\left(\dfrac{1}{4}c-18\right)^2-314\ge-314\forall c\)

Dấu '=' xảy ra khi \(\dfrac{1}{4}c=18\)

hay c=72

Vậy: Giá trị nhỏ nhất của biểu thức \(\dfrac{1}{16}c^2-9c+10\) là -314 khi c=72

b) Ta có: \(d^2+10e^2-6de-10e+26\)

\(=d^2-6de+9e^2+e^2-10e+25+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}e=5\\d=3e=3\cdot5=15\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(d^2+10e^2-6de-10e+26\) là 1 khi e=5 và d=15

c) Ta có: \(4x^4+12x^2+11\)

\(=4x^4+12x^2+9+2\)

\(=\left(2x^2+3\right)^2+2\ge3^2+2=11\)

Dấu '=' xảy ra khi x=0

Vậy: Giá trị nhỏ nhất của biểu thức \(4x^4+12x^2+11\) là 11 khi x=0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 8 2018 lúc 12:50

nguyen mai thuy
Xem chi tiết
Khánh Ngọc
24 tháng 8 2020 lúc 14:19

1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)

Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

Vậy Amax = 5 <=> a = 1/2

b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)

Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)

Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)

Vậy Bmax = 25/36 <=> b = 25/18

Khách vãng lai đã xóa
FL.Han_
24 tháng 8 2020 lúc 14:52

a,\(A=8a-8a^2+3\)

       \(=-8\left(a^2-a\right)+3\)

       \(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)

       \(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+2+3\)

       \(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\) 

Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)

Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)

bài 2:

b,\(D=d^2+10e^2-6de-10e+26\)

\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)

Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)

vậy \(D_{min}=1\)khi \(d=15;e=5\)

c,:\(E=4x^4+12x^2+11\)

\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)

\(=\left(2x^2+3\right)^2+2\ge2\forall x\)

còn 1 đoạn nx bạn tự lm tiếp,lm giống như D

        

       

Khách vãng lai đã xóa
Khánh Ngọc
24 tháng 8 2020 lúc 14:56

2. a. \(C=\frac{1}{16}c^2-9c+10=\frac{1}{16}\left(x-72\right)^2-314\)

Vì \(\left(x-72\right)^2\ge0\forall x\)\(\Rightarrow\frac{1}{16}\left(x-72\right)^2-314\ge-314\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16}\left(x-72\right)^2=0\Leftrightarrow x-72=0\Leftrightarrow x=72\)

Vậy Cmin = - 314 <=> x = 72

b. \(D=d^2+10e^2-6de-10e+26=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\)

Vì \(\left(d-3e\right)^2\ge0;\left(e-5\right)^2\ge0\forall d;e\)\(\Rightarrow\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}d-3e=0\\e=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}\)

Vậy Dmin = 1 <=> d = 15 ; e = 5

c. \(E=4x^4+12x^2+11=\left(2x^2+3\right)^2+2\)

Vì \(\left(2x^2+3\right)^2\ge0\forall x\)\(\Rightarrow\left(2x^2+3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+3\right)^2=0\Leftrightarrow2x^2+3=0\Leftrightarrow x^2=-\frac{3}{2}\left(vo-ly\right)\)

Không thể xảy ra dấu "=" trong th này

Vậy để Emin thì \(\left(2x^2+3\right)^2_{min}=\left(3^2\right)=9\Leftrightarrow2x^2=0\Leftrightarrow x=0\)

Vậy Emin = 9 + 2 = 11 <=> x = 0

Khách vãng lai đã xóa
Đào Hoàng Dũng
Xem chi tiết
_Guiltykamikk_
13 tháng 7 2018 lúc 10:19

\(A=\frac{1}{16}c^2-9c+10\)

\(A=\left(\frac{1}{16}c^2-9c+324\right)-314\)

\(A=\left(\frac{1}{4}c-18\right)^2-314\)

Mà  \(\left(\frac{1}{4}c-18\right)^2\ge0\forall c\)

\(\Rightarrow A\ge-314\)

Dấu "=" xảy ra khi :  \(\frac{1}{4}c-18=0\Leftrightarrow c=72\)

Vậy ...

\(B=d^2+10e^2-6de-10e+26\)

\(B=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)

\(B=\left(d-3e\right)^2+\left(e-5\right)^2+1\)

Mà  \(\left(d-3e\right)^2\ge0\forall d;e\)

       \(\left(e-5\right)^2\ge0\forall e\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}d-3e=0\\e-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}d=15\\e=5\end{cases}}\)

Vậy ...

ST
13 tháng 7 2018 lúc 10:19

a, \(A=\frac{1}{16}c^2-9c+10=\left(\frac{1}{16}c^2-9c+324\right)-314=\left(\frac{1}{4}c-18\right)^2-314\ge-314\)

Dấu "=" xảy ra khi \(\frac{1}{4}c-18=0\Leftrightarrow c=72\)

Vậy Amin = -314 khi c = 72

b, \(B=d^2+10e^2-6de-10e+26\)

\(=\left(d^2-6de+9e^2\right)+\left(e^2-10e+25\right)+1\)

\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}d-3e=0\\e-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}d-15=0\\e=5\end{cases}\Leftrightarrow}\hept{\begin{cases}d=15\\e=5\end{cases}}}\)

Vậy Bmin = 1 khi d = 15, e = 5

Nguyễn Thanh Nhung
Xem chi tiết

\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)

\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)

Trần Đình Thiên
4 tháng 8 2023 lúc 9:52

a) D = 5 - 8x - x^2

Để hoàn thành bình phương, ta cần thêm một số vào biểu thức để biến thành một biểu thức có dạng (x - h)^2. Ta có thể thêm 16 vào cả hai phía của biểu thức:

D + 16 = 5 - 8x - x^2 + 16
= 21 - 8x - x^2

Biểu thức trên có thể viết lại thành (x - 4)^2 - 5:

D + 16 = (x - 4)^2 - 5

Để tìm giá trị lớn nhất của D, ta cần tìm giá trị nhỏ nhất của (x - 4)^2. Vì (x - 4)^2 luôn không âm, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của D là 0 - 5 = -5.

Vậy giá trị lớn nhất của biểu thức a là -5.

b) E = 4x - x^2 + 1

Tương tự như trên, ta thêm 4 vào cả hai phía của biểu thức:

E + 4 = 4x - x^2 + 1 + 4
= 5 - x^2 + 4x

Biểu thức trên có thể viết lại thành -(x - 2)^2 + 9:

E + 4 = -(x - 2)^2 + 9

Để tìm giá trị lớn nhất của E, ta cần tìm giá trị nhỏ nhất của -(x - 2)^2. Vì -(x - 2)^2 luôn không dương, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của E là 0 + 9 = 9.

Vậy giá trị lớn nhất của biểu thức b là 9.

Nguyễn
Xem chi tiết
Huy Hoàng
21 tháng 6 2018 lúc 20:20

Ta có \(D=d^2+10e^2-6de-10e+26\)

\(D=d^2-6de+\left(3e\right)^2+4e^2-10e+26\)

\(D=\left(d-3e\right)^2+4\left(e^2-\frac{5}{2}e+26\right)\)

\(D=\left(d-3e\right)^2+4\left[e^2-2e.\frac{5}{4}+\left(\frac{5}{4}\right)^2+\frac{391}{16}\right]\)

\(D=\left(d-3e\right)^2+4\left[\left(e-\frac{5}{4}\right)^2+\frac{391}{16}\right]\)

\(D=\left(d-3e\right)^2+4\left(e-\frac{5}{4}\right)^2+\frac{391}{4}\)

Mà \(\left(e-\frac{5}{4}\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(e=\frac{5}{4}\)

\(\left(d-3e\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(d-3e=0\)=> \(d=\frac{15}{4}\)

=> \(\left(d-3e\right)^2+\left(e-\frac{5}{4}\right)^2+\frac{391}{4}\ge\frac{391}{4}\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}d=\frac{15}{4}\\e=\frac{5}{4}\end{cases}}\)

Vậy GTNN của D là \(\frac{391}{14}\)khi \(\hept{\begin{cases}d=\frac{15}{4}\\e=\frac{5}{4}\end{cases}}\)

Beauty Box
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
20 tháng 6 2017 lúc 16:58

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

Trà My
20 tháng 6 2017 lúc 19:58

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

Trà My
20 tháng 6 2017 lúc 21:35

\(D=5-8x-x^2=5+16-16-8x-x^2=21-\left(16+8x+x^2\right)=21-\left(x+4\right)^2\le21\)

Dấu "=" xảy ra khi x=-4

---

\(E=4x-x^2+1=1+4-x^2+4x-4=5-\left(x^2-4x+4\right)=5-\left(x-2\right)^2\le5\)

Dấu "=" xảy ra khi x=2

Trình bày thì tương tự phần B mình đã trình bày

Biện Bạch Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 0:13

Bài 1: 

\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)

\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)

\(=25c^2+10c+1+25d^2+20d+4\)

\(=25c^2+25d^2+10c+20d+5\)

\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)

Bài 3: 

a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)

Dấu '=' xảy ra khi x=-3/2

b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1/3

Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang