Tam giác ABC cân tại C .Biet \(\dfrac{AC}{AB}\)=k( k khác 1). Phan giac CM ,AN ,BP .CMR:
a)\(\dfrac{S_{ABC}}{S_{MNP}}\)=(\(\dfrac{\sqrt{k}+1}{\sqrt{k}}\))2
b)SMNP< \(\dfrac{S_{ABC}}{4}\)
- Cho tam giác ABC đồng dạng với MNP và \(\dfrac{S_{ABC}}{S_{MNP}}=9\), chọn đáp án đúng:
\(a.\dfrac{MN}{AB}=9\)
\(b.\dfrac{MN}{AB}=3\)
\(c.\dfrac{MN}{AB}=\dfrac{1}{9}\)
\(d.\dfrac{MN}{AB}=\dfrac{1}{3}\)
- Cho tam giác ABC, AD là phân giác của BAC, AB=16cm, AC=24cm, DC=15cm. Tính BD?
Câu 1: D
Câu 2:
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{16}=\dfrac{15}{24}=\dfrac{5}{8}\)
=>BD=10(cm)
Cho tam giác ABC vuông tại A(AB<AC), đường cao AH.
a) Trên cạnh AC lấy điểm K(K ≠A, K≠C), gọi D là hình chiếu của A trên BK. Chứng minh rằng BD \(\times\) BK=BH\(\times\)BC
b)Biết BC= 4\(\times\)BH . Chứng minh rằng:\(s_{BHD}\)=\(\dfrac{1}{4}\)\(S_{BKC}\)\(\cos^2ABD\)
Cho tam giác ABC vuông tại A, đường cao AH. Lấy điểm K bất kỳ trên cạnh AC \(\left(K\ne A;K\ne C\right)\). Gọi D là hình chiếu của A trên BK. Chứng minh \(S_{BHD}=\dfrac{1}{4}S_{BKC}.cos^2\widehat{ABD}\)
Đề bài của em bị sai
Hai tam giác BHD và BKC đồng dạng do chung góc \(\widehat{KBC}\) và \(\widehat{BDH}=\widehat{BCK}\) (cùng bằng \(\widehat{BAH}\))
Do đó tỉ số đồng dạng 2 tam giác là \(k=\dfrac{BD}{BC}\)
\(\Rightarrow\dfrac{S_{BDH}}{S_{BKC}}=k^2=\dfrac{BD^2}{BC^2}\)
Nếu đề bài đúng thì đồng nghĩa ta phải chứng minh:
\(\dfrac{BD^2}{BC^2}=\dfrac{cos^2\widehat{ABD}}{4}=\dfrac{\left(\dfrac{BD}{AB}\right)^2}{4}=\dfrac{BD^2}{4AB^2}\)
\(\Rightarrow BC^2=4AB^2\) nhưng điều này rõ ràng ko đúng (vì đề bài ko hề cho BC=2AB)
Câu 14: Cho tam giác ABC vuông tại A, đường cao AH. Trên AB,AC lấy K,L sao cho:AK=AH=AL. CMR: \(S_{AKI}\le\dfrac{1}{2}S_{ABC}\)
Đọc đề là sai r bn ạ . Ban đầu ko cho I mà lại bạo phải c/m tam giác AKI nhỏ hơn hoặc 1/2 tam giác ABC.
XEM LẠI ĐỀ NHA
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)
Bài 6:Cho tam giác ABC vuông tại A, có đường cao AH. Cho AB = 6cm, AC = 8cm.
a) Tính AH, HB.
b) Vẽ HM vuông AB tại M, HN ^ AC tại N. Chứng minh AM.AB = AN.AC.
c) Gọi K là trungđiểm BC. Chứng minh AK vuông MN.
d) Tính \(\dfrac{S_{ANM}}{S_{ABC}}\)
a. Trên cạnh AB và AC của tam giác ABC lần lượt lấy 2 điểm M và N. Chứng minh \(\dfrac{S_{\Delta AMN}}{S_{\Delta ABC}}=\dfrac{AM.AN}{AB.AC}\).
b. Cho hình bình hành ABCD. Trên các cạnh BC, CD lần lượt lấy các điểm M, N sao cho \(\dfrac{BM}{CM}=\dfrac{CN}{2DN}=k\).
Gọi P, Q lần lượt là giao điểm của BD và AM, AN. Chứng minh \(S_{MPQN}=S_{APQ}\)
Bài 1: Cho tam giác ABC có AD, BE, CF cắt tại O. CMR: \(S_{\Delta AOE}=S_{\Delta DEC}=S_{\Delta OCD}=S_{\Delta OBD}=S_{\Delta OBF}=S_{\Delta OFA}=\dfrac{1}{6}S_{\Delta ABC}\)
Bài 2: Cho tam giác ABC có \(AM=\dfrac{1}{2}BC\). CMR: tam giác ABC vuông tại A.
Bài 2:
Ta có: AM=1/2BC
nên AM=BM=CM
Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{B}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{C}\)
Xét ΔBAC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{MAB}+\widehat{B}+\widehat{MAC}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)
=>\(\widehat{BAC}=90^0\)
hay ΔABC vuông tại A
Cho tam giác nhọn ABC có các đường cao AH,BK,CL. CMR:
a, \(\dfrac{S_{AKL}}{S_{ABC}}= \dfrac{AL.AK}{AB.AC}=cos^{2}A\)
b, \(\dfrac{S_{HKL}}{S_{ABC}}=1-cos^{2}A-cos^2B-cos^2 C\)