CMR: Với mọi n là số nguyên thì
a) n2 + 7n + 22 không chia hết cho 9
b) n2 - 5n - 49 không chia hết cho 69
Chứng minh rằng với mọi số nguyên n :
a, n2 + 7n + 22 không chia hết cho 9
b, n2 _ 5n _ 49 không chia hết cho 169
a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)
*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)
\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)
Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9
*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3
Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9
Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)
b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)
*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)
\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)
Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169
*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13
Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169
Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)
a) G/s phản chứng \(n^2+7n+22⋮9\)
=> \(n^2+4n+4+\left(3n+18\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)
=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)
=> \(\left(n+2\right)^2⋮3\)
=> \(\left(n+2\right)^2⋮9\)
Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\)
=> \(3n⋮9\)
=> \(n⋮3\)
Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3
=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9
=> Điều giả sử là sai
=> TA CÓ ĐPCM
b) Ta ttu g/s phản chứng \(n^2-5n-49⋮169\)
=> \(\left(n+4\right)^2-13n-65⋮13\) (1)
Dễ thấy \(13n+65=13\left(n+5\right)⋮13\)
=> \(\left(n+4\right)^2⋮13\)
=> \(\left(n+4\right)^2⋮169\)(2)
TỪ (1) VÀ (2) THÌ: \(13\left(n+5\right)⋮169\)
=> \(n+5⋮13\)
=> \(n^2-25⋮13\)(3)
Và cx => \(5n+25⋮13\)(4)
(3); (4) => \(n^2-5n-50⋮13\)
=> \(n^2-5n-49-1⋮13\)
Mà: \(n^2-5n-49⋮13\)
=> \(1⋮13\)
NHG ĐÂY LÀ 1 ĐIỀU VÔ LÍ
=> ĐIỀU GIẢ SỬ LÀ SAI
=> TA CÓ ĐPCM.
CMR với mọi số tự nhiên n thì n2+3n+11 không chia hết cho 49
Ta có:
\(n^2+3n+11\)
\(=n^2+3n+18-7\)
\(=\left(n+2\right)\left(n+9\right)-7\)
Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7
Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7
Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49
Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\)
Cmr với mọi số nguyên n thì
a)n^2+3n+4 không chia hết cho 49
b)n^2+5n+16 không chia hết cho 169
Giúp vớiiiiii!
CMR với mọi số tự nhiên n thì n2+n+6 không chia hết cho 5
Chứng minh rằng :
a) n . ( n + 5 ) hoặc chia hết cho 25 hoặc không chia hết cho 5 với mọi n là các số tự nhiên.
b)( n + 2 ) . ( n + 9 ) hoặc chia hết cho 49 hoặc không chia hết cho 7 với mọi n là các số tự nhiên.
c) n2 + 5n + 4 hoặc chia hết cho 9 hoặc không chia hết cho 3 với mọi n là các số tự nhiên.
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
Chứng minh
a) n4-10n2+9 chia hết cho 382 với mọi số nguyên lẻ n
b) 10n+18n+9 chia hết cho 27 với mọi số tự nhiên n
c) n2+7n+22 không chia hết cho 9 với mọi số nguyên n
d) n2-5n-49 không chia hết cho 169 với mọi số nguyên n
a) Đề sai, phải là 384 mới đúng
Đặt \(A=n^4-10n^2+9\)
\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)
\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^2-9\right)\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì n lẻ nên n = 2k + 1 ( k thuộc Z )
Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)
A = 16k( k + 1)( k - 1)( k + 2)
Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3
=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8
=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)
=> A chia hết cho 16.24 = 384 ( Đpcm )
Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)
b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9
=> 10n + 18n + 9 không chia hết cho 27
b) n2 - 5n - 49 không chia hết cho 69
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
BÀI 1 :Chứng minh
a) 2009^2010 không chia hết cho 2010
b) n^2 + 7n + 22 không chia hết cho 9 ( với mọi n thuộc N )
BÀI 2 : Cho a là số nguyên tố lớn hơn 3 . Chứng minh : a^2 - 1 chia hết cho 24
Bài 3 : Chứng minh n^3 + 6n^2 + 8n chia hết cho 48 với mọi số chẵn n
2009^2010đồng dư với 1 (theo mod 2010)