Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Chứng minh rằng : Với mọi số nguyên n thì \(n^3-3n^2+2n\) luôn chia hết cho 6
Chứng minh biểu thức : n(n+5)-(n-3)(n+2) luôn chia hết cho 6 với mọi n là số nguyên
Chứng minh rằng
a) n^3-n chia hết cho 6 với mọi số nghuyên n
b) biểu thức n/3+n^2/2+n^3/6 luôn có giá trị nguyên với mọi giá trị n nguyên
chứng minh rằng biểu thức n*(n+5)-(n-3)*(n+2) luôn chia hết cho 6 với mọi n số nguyên
Bài 20: Chứng minh với mọi số nguyên n thì
d) \(\left(n+7\right)^2-\left(n-5\right)^2\)chia hết cho 24
e) \(\left(7n+5\right)^2-25\)chia hết cho 7 với \(n\inℤ\)
f) \(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24 với \(n\inℤ\)
g) \(n^3-n\)chia hết cho 6 với mọi \(n\inℤ\)
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
Cho Q=3n(n^2+2)-2(n^3-n^2)-2n^2-7n
c/m Q luôn chia hết cho 6 vs mọi số nguyên
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
chứng minh rằng (n-1)^2*(n+1)+(n^2-1) luôn chia hết cho 6 với mọi số nguyên n