Xác định a, b, c biết:
\(\left(ax^2+bx+c\right)\left(x+3\right)=x^3+2x^2-3x\) với mọi x
a) Xác định a,b,c,d để đa thức\(f\left(x\right)=ax^4+bx^3+cx^2+dx+c\) thoả mãn điều kiện \(f\left(x\right)-f\left(x-1\right)=x^3\) với mọi x và f(0) = 0
Xác định a,b,c,d thỏa mãn đẳng thức với mọi x
a,\(\left(ax+b\right)\left(x^2+cx+1\right)=7x^3-3x+2\)
b, \(x^4+ax^2+b=\left(x^2-3x+2\right)\left(x^2+cx+d\right)\)
Xác định các hệ số a,b để:
a) Đa thức \(x^4+3x^3-17x^2+ax+b⋮\left(x^2+5x-3\right)\)
b) Đa thức \(x^5+7x^4+ax^2+bx+72⋮\left(x^3-2x^2+4\right)\)
c) Đa thức \(4x^3+ax+b:\left(x^2-1\right)\)dư 2x-3
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
Xác định a; b; c; d biết đẳng thức sau đúng với mọi x
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
Lời giải:
\(x^3-ax^2+bx-c=(x-a)(x-b)(x-c)\)
\(\Leftrightarrow x^3-ax^2+bx-c=(x^2-bx-ax+ab)(x-c)\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2(c+a+b)+x(ab+bc+ac)-abc\)
Để đẳng thức trên đúng với mọi $x$ thì:
\(\left\{\begin{matrix}
c+a+b=a\\
ab+bc+ac=b\\
abc=c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
b+c=0\\
bc+a(b+c)=b\\
c(ab-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b+c=0\\ bc=b\\ c(ab-1)=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-b(1)\\ -b^2=b(2)\\ -b(ab-1)=0(3)\end{matrix}\right.\)
Từ $(2)\Rightarrow b=0$ hoặc $b=-1$
Nếu $b=0$ thì $c=-b=0$, $a$ là số thực tùy ý.
Nếu $b=-1$ thì $c=-b=1$. Từ $(3)\Rightarrow ab=1\Rightarrow a=\frac{1}{b}=-1$
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Tớ nêu hướng giải bài 3 thôi nhé:
Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1
Lời giải:
Thật vậy,thay x = 1 vào:
\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)
Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
Xác định a, b để \(f\left(x\right)⋮g\left(x\right)\)
a) f(x)= \(2x^3-3x^2+ax+b\) ; \(g\left(x\right)=x^2+x+2\)
b) \(f\left(x\right)=2x^4+ax^2+b\) ; \(g\left(x\right)=x^2-x-3\)
c) \(f\left(x\right)=3x^4-8x^3-10x^2+ax-b\) ; \(g\left(x\right)=3x^2-2x+1\)
d) \(f\left(x\right)=ax^3+bx^2-11x+30\) ; \(g\left(x\right)=x^2-3x-10\)
Cho \(f\left(x\right)=ax^3+4x\left(x^2-1\right)+8\) và \(g\left(x\right)=x^3+4x\left(bx+1\right)+c-3\) xác định a, b, c để \(f\left(x\right)=g\left(x\right)\)
1.tìm a,b để:
a)\(x^3+ax+bx+6⋮\left(x-1\right)\)
b)\(x^4+ax^3+bx^2+5x+1⋮\left(x+1\right)^2\)
c)\(^{x^4+3x^3+ax^2+bx+5⋮\left(x-2\right)^2}\)
d)\(x^4+10x^3+ax^2+bx+7⋮\left(x+2\right)^2\)
e)\(x^4+ax^3+5x^2+bx+1⋮x-1\)
2.Cho a+b+c=0.tính\(\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
bài 2:
\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)
\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)
sao nữa nhỉ :v