tìm x
3x^3 - 48x = 0
x^3 + x^2 - 4x = 4
1) x(x-3)-2x(x-3)=0
2) x(3x-1)-5(1-3x)=0
3) 5(x+3)-2x(3x+3)=0
4) 4x(x+3)-x-3=0
5) x3+15x2+75x+125=0
6) 4x2-12x+9=0
7) x2-16x+60=0
8) x3+48x=12x2+64
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
tìm x, biết
x4+4x3-4x2-48x-48=0
x4+4x3-4x2-48x-48=0
=> x4+4(x3-x2) - 48x = 48
=> x4 + 4[x2(x-1)] - 48x = 48
\(x^4+4x^3-4x^2-48x-48=0\)
\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)
\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)
\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)
\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)
Ta có: \(x^2+6x+12=\left(x+3\right)^2+3>0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)
Vậy...
tìm x
a, 2x(x-5)-x(3+2x) =26
b, 5x(x-1)=x-1
c, 2(x+5)-x2-5x =0
d, (2x-3)2-(x+5)2=0
e, 3x3-48x=0
f, x3+x2-4x =4
Mọi người giúp em nhanh nha em c.ơn
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
b) \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{1}{5}\end{array}\right.\)
c) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-\frac{2}{3}\end{array}\right.\)
e) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
f) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
giúp mk vs >^v^<
đề bài:
a) 5x(x-1)=x-1
b) 2(x+5)-x*2-5x=0
c) (2x-3)*2-(x-5)*2=0
d) 3x*3-48x=0
e) x*3+x*2-4x=4
câu c,d,e lạ quá nhưng thui you viết thế nào tui làm thế ấy sai đừng trách
a) 5x(x-1)=x-1
<=> 5x(x-1)-(x-1)=0
<=>(x-1)(5x-1)=0
<=>x-1=0 hoặc 5x-1=0
<=>x=1 hoặc \(\frac{1}{5}\)
b) 2(x+5)-x*2-5x=0
VT=-5(x-2)
<=>-5(x-2)=0
<=>x-2=0
<=>x=2
c)(2x-3)*2-(x-5)*2=0
VT=2(x+2)
<=>2(x+2)=0
<=>x+2=0
<=>x=-2
d) 3x*3-48x=0
VT=-39x
<=>-39x=0
<=>x=0
e) x*3+x*2-4x=4
VT=x
<=>x=4
Giải các pt sau:
A). (3x-4)2 = 9(x-1)(x+1)
B). (4x-5)2 -4(x-2)2 =0
C). |X2 - x| = -2x
D). (X+3)/(x-3)+(48x3)/(9-x2)=(x-3)/(x+3)
a. (3x-4)2=9(x-1)(x+1)
<=> 9x2-24x+16=9x2-9
<=> -24x=-25
<=> x=\(\dfrac{25}{24}\)
Vậy S=\(\left\{\dfrac{25}{24}\right\}\)
b. (4x-5)2-4(x-2)2=0
<=> (4x-5)2-(2x-4)2=0
<=> (4x-5-2x+4)(4x-5+2x-4)=0
<=> (2x-1)(6x-9)=0
<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c. |x2-x|= -2x
Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)
=> x2-x= -2x
<=> x2-x+2x=0
<=> x2+x=0
<=> x(x+1)=0
<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))
Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1
=> x-x2= -2x
<=> x-x2+2x=0
<=> 3x-x2=0
<=> x(3-x)=0
x=0 (thỏa mãn điều kiện x<1)
hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)
Vậy S=\(\left\{0\right\}\)
d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
ĐKXĐ: \(x\ne\pm3\)
Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=> x2+6x+9-48x3=x2-6x+9
<=> 12x-48x3=0
<=> 12x(1-4x2)=0
<=> 12x(1-2x)(1+2x)=0
<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{0;\pm0,5\right\}\)
Giải các pt sau:
A). (3x-4)2 = 9(x-1)(x+1)
B). (4x-5)2 - 4(x-2)2 =0
C). |X2-x|= -2x
D). (x+3)/(x-3)+(48x3)/(9-x2= (x-3)/(x+3)
a ) ( 3x - 4 )2 = 9 (x-1)(x+1)
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9
\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16
\(\Leftrightarrow\) -24x = -24
\(\Leftrightarrow\) x = 1
Vậy phương trình có nghiệm x = 1 .
Tìm x
a)2x(x+5)-x(3+2x)=26
b)5x(x-1)=x-1
c)2(x+5)-x2-5x=0
d)(2x-3)2-(x+5)2=0
e)3x3-48x=0
f)x3+x2-4x=4
g)(x-1)(2x+3)-x(x-1)=0
h)x2-4x+8=2x-1
a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)
Vậy \(x=\dfrac{26}{7}\)
b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(x=3\)
__________________________Chúc bạn học tốt____________________________
Tim x biết
a)2x(x-5)-x(3+2x)=26
b)5x(x-1)=x-1
C)2(x+5)-x^2-5x=0
d)(2x-3)^2(x+5)=0
e)3x^3-48x=0
f)x^3+x^2-4x=0
Rối mắt , loạn thần kinh toàn là x không
a) 2x(x - 5) - x(3 + 2x) = 26
2x2 - 10x - 3x - 2x2 = 26
-10x - 3x = 26
-13x = 26 => x = -2
b) 5x(x - 1) = x - 1
5x(x - 1) - (x - 1) = 0
(x - 1)(5x - 1) = 0
x - 1 = 0 => x = 1
5x - 1 = 0 => x = \(\frac{1}{5}\)
Vậy x = 0; x = \(\frac{1}{5}\)
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)