Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên An
Xem chi tiết
Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:53

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

Nguyễn Minh Hằng
24 tháng 3 2016 lúc 12:55

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

Đinh Quốc Thịnh
Xem chi tiết
Akai Haruma
12 tháng 11 2017 lúc 16:10

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

Akai Haruma
12 tháng 11 2017 lúc 16:48

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

Akai Haruma
12 tháng 11 2017 lúc 17:04

Câu 3: Bạn xem lại đề bài hộ mình xem có đúng không nhe.

Thảob Đỗ
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 8 2021 lúc 18:07

a.

ĐKXĐ: ...

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{5}-2}\right)^{x-1}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)

\(\Leftrightarrow\left(\sqrt{5}-2\right)^{1-x}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)

\(\Leftrightarrow1-x=\dfrac{x-1}{x+1}\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

b.

ĐKXĐ: \(\left\{{}\begin{matrix}x+3>0\\x^2+3x>0\end{matrix}\right.\) \(\Rightarrow x>3\)

\(log_{x^2+3x}\left(x+3\right)=1\)

\(\Rightarrow x+3=x^2+3x\)

\(\Rightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\left(loại\right)\end{matrix}\right.\)

nanako
Xem chi tiết
Hùng
Xem chi tiết
Hùng
Xem chi tiết
Nguyễn Hoàng Minh Đức
Xem chi tiết
Vũ Trịnh Hoài Nam
26 tháng 3 2016 lúc 5:31

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

Araku Ryn
Xem chi tiết
An Lâm Bảo
28 tháng 8 2021 lúc 9:32

hello

Khách vãng lai đã xóa
Ngoc Huynh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 9 2020 lúc 22:29

ĐK: \(\left\{{}\begin{matrix}2x^2+2x-6>0\\2x^2-5x+4>0\\mx-5>0\end{matrix}\right.\)

Khi đó pt tương đương:

\(2log_{mx-5}\left(x^2+2x-6\right)=2log_{mx-5}\left(2x^2-5x+4\right)\)

\(\Leftrightarrow x^2+2x-6=2x^2-5x+4\)

\(\Leftrightarrow x^2-7x+10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Thay 2 nghiệm vào 2 điều kiện đầu đều thỏa mãn

\(\Rightarrow\) pt có nghiệm duy nhất khi và chỉ khi có đúng 1 nghiệm thỏa mãn \(mx-5>0\)

TH1: \(\left\{{}\begin{matrix}2m-5>0\\5m-5\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{5}{2}\\m\le1\end{matrix}\right.\) (ko có m thỏa mãn)

TH2: \(\left\{{}\begin{matrix}5m-5>0\\2m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow1< m\le\frac{5}{2}\)