Bài 4: Hàm số mũ. Hàm số logarit

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Quốc Thịnh

Tìm m để \(\sqrt{\left(2-\sqrt{3}\right)^x}+m\sqrt{\left(2+\sqrt{3}\right)^x}=4\) có 2 nghiệm x1,x2 sao cho x1-x2=\(\log_{2+\sqrt{3}}3\)

Chứng minh \(2017^{x^3}+2017^{\dfrac{1}{x^5}}>2018\)với mọi x>0

Tìm m để PT \(\left(m^2-1\right)\log_{\dfrac{1}{2}}^2\left(x^4-2\right)^2+4\left(m-5\right)\log_{\dfrac{1}{2}}\dfrac{1}{x-2}+4m-4=0\)

có nghiệm thuộc \(\left[\dfrac{5}{2};4\right]\)

Akai Haruma
12 tháng 11 2017 lúc 16:10

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

Akai Haruma
12 tháng 11 2017 lúc 16:48

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

Akai Haruma
12 tháng 11 2017 lúc 17:04

Câu 3: Bạn xem lại đề bài hộ mình xem có đúng không nhe.


Các câu hỏi tương tự
Thảob Đỗ
Xem chi tiết
trần nam
Xem chi tiết
Nguyễn Kiều Hạnh
Xem chi tiết
A Lan
Xem chi tiết
Ngọc Thư
Xem chi tiết
Trần Thảo
Xem chi tiết
Nguyễn Thị Bích Du
Xem chi tiết
Minh Anh
Xem chi tiết
Huỳnh Văn Thiện
Xem chi tiết