có ai ko, giúp e với. chỉ e "đường đi" hoặc có bài giải càng tốt. pls!!
mún lấy đạo hàm mà tịt lun r. ko hỉu
có ai ko, giúp e với. chỉ e "đường đi" hoặc có bài giải càng tốt. pls!!
mún lấy đạo hàm mà tịt lun r. ko hỉu
\(^{y=e^{\dfrac{2x+m}{x-1}}}\). tìm m để Max y=e5 trên \(\left[2;4\right]\)
Gọi m0 là giá trị nhỏ nhất để bất phương trình:
\(1+\log_2\left(2-x\right)-2\log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le-\log_2\left(x+1\right)\) có nghiệm. m0 thuộc khoảng nào sau đây:
A. (-9;-8) B. (9;10) C. (-10;-9) D. (8;9)
cho các số thực dương a, b, x, y thỏa mãn a>1, b>1 và \(a^{x^2}=b^{y^2}=\left(ab\right)^2\). Giá trị nhỏ nhất của biểu thức P=8x+y là \(m+n\sqrt{p},m,n,p\in N,p\le15\), giá trị của m+n+p thuộc khoảng:
A. (7;9) B. [10;13) C. [18;21) D. [14;16)
Cho hai số thực x, y thay đổi thõa mãn \(log_{\sqrt{3}}\dfrac{x+y}{x^2+y^2+xy+2}=x\left(x-3\right)+y\left(y-3\right)+xy\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+2y+3}{x+y+6}\)
Tìm m để \(\sqrt{\left(2-\sqrt{3}\right)^x}+m\sqrt{\left(2+\sqrt{3}\right)^x}=4\) có 2 nghiệm x1,x2 sao cho x1-x2=\(\log_{2+\sqrt{3}}3\)
Chứng minh \(2017^{x^3}+2017^{\dfrac{1}{x^5}}>2018\)với mọi x>0
Tìm m để PT \(\left(m^2-1\right)\log_{\dfrac{1}{2}}^2\left(x^4-2\right)^2+4\left(m-5\right)\log_{\dfrac{1}{2}}\dfrac{1}{x-2}+4m-4=0\)
có nghiệm thuộc \(\left[\dfrac{5}{2};4\right]\)
xác định m để hàm số:
a. y=x3-3(2m+1)x2+(12m+5)x+2 đồng biến trên tập xác định
b. y=mx3-(2m-1)x2+(m-2)x-2 đồng biến trên tập xác định
c. y=\(\dfrac{-1}{3}mx^3+mx^2-x+3\) nghịch biến trên tập xác định
d. y=\(\dfrac{x^2+mx-5}{3-x}\) nghịch biến trên từng khoảng xác định
chứng minh hàm số y=\(\dfrac{1}{3}x^3-mx^2-\left(2m+3\right)x+9\) luôn có cực trị với mọi giá trị của hàm số m
giải pt:
a) \(\left(\sqrt{5}+2\right)^{x-1}=\left(\sqrt{5}-2\right)^{\dfrac{x-1}{x+1}}\)
b) \(log_{x^2+3x}\left(x+3\right)-1=0\)
4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)