Tính 27n:3n=9
25/5n=5
tìm n a)1: 9. 27n=3n
a) \(\frac{1}{9.27n}=3n\)
=> \(\frac{1}{3^5n}=3n\)
=> \(\frac{1}{n}3^{-5}=3n\)
=> \(\frac{1}{n}:n=3:3^{-5}\)
=> \(n^{-2}=3^{-4}=9^{-2}\)
Vậy n=9
C minh 2^n+2 *3n+5n-5 chia het cho 25
lim\(\left(5n-\sqrt{25n^2-3n+5}\right)\)
lim\(\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-2n+1\right)\left(5-2n^2\right)}\)
\(lim\left(5n-\sqrt{25n^2-3n+5}\right)=lim\dfrac{25n^2-25n^2+3n-5}{5n+\sqrt{25n^2-3n+5}}\)
\(=lim\dfrac{3n-5}{5n+\sqrt{25n^2-3n+5}}=lim\dfrac{3-\dfrac{5}{n}}{5+\sqrt{25-\dfrac{3}{n}+\dfrac{5}{n^2}}}=\dfrac{3-0}{5+\sqrt{25-0+0}}=\dfrac{3}{10}\)
\(lim\dfrac{4n^5-3n^4-2n^3+7n-9}{-5n\left(3n^2-3n+1\right)\left(5-2n^2\right)}=lim\dfrac{\dfrac{4n^5-3n^4-2n^3+7n-9}{n^5}}{\dfrac{-5n}{n}\dfrac{\left(3n^2-3n+1\right)}{n^2}\dfrac{\left(5-2n^2\right)}{n^2}}\)
\(=lim\dfrac{4-\dfrac{3}{n}-\dfrac{2}{n^2}+\dfrac{7}{n^4}-\dfrac{9}{n^5}}{-5.\left(3-\dfrac{2}{n}+\dfrac{1}{n^2}\right).\left(\dfrac{5}{n^2}-2\right)}=\dfrac{4-0-0+0-0}{-5\left(3-0+0\right).\left(0-2\right)}=\dfrac{2}{15}\)
Tìm, n thuộc Z sao cho phân số sau có giá trị là số nguyên
a) A=n+5/n+9
b) B= 3n-5/3n-8
c) D = 5n+1/5n+4
a. A có giá trị là số nguyên <=> n+5 chia hết cho n+9
<=>(n+9)-4 chia hết cho n+9
<=> 4 chia hết cho n+9 (vì n+9 chia hết cho n+9 )
<=> n+9 là ước của 4
=> n+9 = 1,-1 , 2 ,-2,4,-4
sau đó bn tự tìm n ha
b, B là số nguyên <=>3n-5 chia hết cho 3n-8
<=>(3n-8)+5 chia hết cho 3n-8
<=> 5 chia hết cho 3n-8
<=> 3n-8 là ước của 5
=> 3n-8 =1,-1,5,-5
tiếp bn lm ha
c, D là số nguyên <=> 5n+1 chia hết cho 5n+4
<=> (5n+4)-3 chia hết cho 5n+4
<=> 3 chia hết cho 5n +4
<=> 5n +4 là ước của 3
=> 5n+4 =1, -1,3,-3
tiếp theo bn vẫn tự lm ha
đoạn tiếp theo ở cả 3 câu , bn tìm n theo từng trường hợp rồi xem xem giá trị n nào thỏa mãn n là số nguyên là OK . chúc bn học giỏi
Tìm số nguyên n để các phân số sau không tối giản
a, 3n+5/3n+3
b, 2n+3/7n+9
c 5n+6/8n+7
d, 4n+5/5n+4
a)2n+3 chia hết n-2
b)3n+23 chia hết n+4
c)27n-5 chia hết n
d)3n+1 chia hết 11-2n
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{5n^3-3n^2+1}{1-3n^3}\)
b) \(\lim\limits\dfrac{-9n+5}{3n-3}\)
`a)lim[5n^3-3n^2+1]/[1-3n^3]`
`=lim[5-3/n+1/[n^3]]/[1/[n^3]-3]`
`=5/[-3]=-5/3`
_____________________________
`b)lim[-9n+5]/[3n-3]`
`=lim[-9+5/n]/[3-3/n]`
`=[-9]/3=-3`
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-6n^5+3n^3-1}{n^4-8n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-5n^7+8n^5-n}{5n^6-2n}\)
tim các gioi han sau
a) \(\dfrac{n^2-2n}{5n+3n^2}\)
b) \(\dfrac{n^2-2}{5n+3n^2}\)
c) \(\dfrac{1-2n}{5n+3n^2}\)
d) \(\dfrac{1-2n^2}{5n+5}\)
a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)
b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)
c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)
d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{2n^2+5}{-3n^2-3}\)
b) \(lim\left(-5n^3-2n^2+5n-6\right)\)
`a)lim[2n^2+5]/[-3n^2-3]`
`=lim[2+5/[n^2]]/[-3-3/[n^2]]`
`=2/[-3]=-2/3`
`b)lim(-5n^3-2n^2+5n-6)`
`=lim n^3(-5-2/n+5/[n^2]-6/[n^3])`
Vì `{:(lim n^3=+oo),(lim (-5-2/n+5/[n^2]-6/[n^3])=-5):}}=>lim n^3(-5-2/n+5/[n^2]-6/[n^3])=-oo`