Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phương nguyễn
Xem chi tiết
Khánh Hường
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2023 lúc 21:41

b: =(m-1)^2-4(-m^2-2)

=m^2+2m+1+4m^2+8

=5m^2+2m+9

=5(m^2+2/5m+9/5)

=5(m^2+2*m*1/5+1/25+44/25)

=5(m+1/5)^2+44/5>=44/5>0 với mọi m

=>PT luôn có hai nghiệm pb

Quang Nghia Nguyen Dang
Xem chi tiết
Yến Hải
Xem chi tiết
Zero Two
4 tháng 4 2022 lúc 16:33

chũ xấu ;^

Dương Hoàng Nam
Xem chi tiết
Dương Hoàng Nam
25 tháng 9 2021 lúc 13:11

cái thứ 2 em tải hình xuống đề phòng hình 1 mất ạ

 

Dương Hoàng Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 9 2021 lúc 23:55

Bài 1: 

1: \(\sqrt{3+2\sqrt{2}}=\sqrt{2}+1\)

2: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

3: \(\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)

4: \(\sqrt{7-2\sqrt{10}}=\sqrt{5}-\sqrt{2}\)

Loan Nguyễn
Xem chi tiết
nthv_.
9 tháng 10 2021 lúc 21:39

Câu 5:

Điện trở tương đương:

R23 = R2 + R3 = 6 + 4 = 10\(\Omega\)

R234 = (R23.R4) : (R23 + R4) = (10.10) : (10 + 10) = 5Ω

R = R1 + R234 = 2 + 5 = 7Ω

nthv_.
9 tháng 10 2021 lúc 21:42

Tham khảo:

Câu 6:

undefined

 

Hoàng Tuấn
Xem chi tiết
nhung olv
13 tháng 10 2021 lúc 19:37

bài 2 

x+y/2-5=-21/-3 =7

=> x=7.2 = 14

     y=7.5 = 35

 

Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:38

Bài 77: 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{9}=\dfrac{y-x}{9-8}=5\)

Do đó: x=40; y=45

Dương Hoàng Nam
Xem chi tiết
Minh Hiếu
25 tháng 9 2021 lúc 17:35

1) \(\sqrt{2x-5}=7\)

\(\left(\sqrt{2x-5}\right)^2=7^2\)

\(2x-5=49\)

\(2x=54\)

\(x=27\)

2) \(3+\sqrt{x-2}=4\)

\(\sqrt{x-2}=1\)

\(\left(\sqrt{x-2}\right)^2=1^2\)

\(x-2=1\)

\(x=3\)

Lấp La Lấp Lánh
25 tháng 9 2021 lúc 17:38

1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)

\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)

2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)

3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

6) \(ĐK:x\ge-2\)

 \(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)

\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

7) \(ĐK:x\ge-1\)

\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)

Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 17:43

\(3,\sqrt{x^2-2x+1}=1\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=1\\ \Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\left(x\ge1\right)\\x-1=-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

\(4,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\\ \Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\left(x\ge2\right)\\x-2=-1\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

\(5,ĐK:x\in R\\ PT\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\1-2x=x+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

\(6,ĐK:x\ge-2\\ PT\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\Leftrightarrow x+2=x+7\Leftrightarrow0x=5\Leftrightarrow x\in\varnothing\)

\(7,ĐK:x\ge-1\\ PT\Leftrightarrow5\sqrt{x+2}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{x+2}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+1}\\ \Leftrightarrow x+2=x+1\\ \Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)