Chứng minh rằng biểu thức sau luôn dương vs x , y :
A = 2(x - 3)2 + 5
Giups mình nhé !
Cho Biểu Thức Q = x2 + 6y2 - 2xy - 12x + 2y + 2017 .
Chứng Minh Rằng Biểu Thức Q Luôn Nhận giá trị dương với mọi số thực x,y.
giúp mình với nhé! MÌNH CẢM ƠN Ạ =))
Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976
= [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976
= ( x- y - 6 )2 + 5 (y-1)2 + 1976
Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0
Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y
Q=x2+6y2−2xy−12x+2y+2017
Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976
=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976
=[(x-y)2-12(x-y)+36]+5(y-1)2+1976
=(x-y-6)2+5(y-1)2+1976
do (x-y-6)2 ≥ 0 ∀ x,y
(y-1)2 ≥ 0 ∀ y
=> (x-y-6)2+5(y-1)2+1976 ≥ 1976
=> Q≥ 1976
=> MinA=1976 khi
y-1=0
=>y=1
x-y-6=0
=>x-1-6=0
=>x-7=0
=>x=7
Vậy GTNN của Q =1976 khi x=7 và y=1
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
Chứng minh rằng: biểu thức sau luôn âm hoặc luôn dương.
a,A=(1-2x).(x-1)-5
b,B=y2+2y+4x-2x+1+2019
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
Chứng minh biểu thức sau luôn dương với mọi giá trị của x
A= x^2 + x + 1
Các bạn giải giúp mình nhé! Cảm ơn
\(A=x^2+x+1=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
A= x2 + x + 1
A = x2 + 2. \(\dfrac{1}{2}\). x + (\(\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\)
A = ( x + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\)
Vậy, x2 + x + 1>0 với mọi x
Đúng thì like giúp mik nha. Thx bạn
\(x^2+x+1\)
\(=\) \(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\) \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\) \(\left(x+\dfrac{1}{2}\right)^2+\left(1-\dfrac{1}{4}\right)\)
\(=\) \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\) luôn dương với mọi \(x\) ( 1 )
mà cộng thêm 1 lượng \(\dfrac{3}{4}\) luôn dương ( 2 )
Từ ( 1 ) và ( 2 ): ⇒ \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) luôn dương
⇒ \(x^2+x+1\) luôn dương với mọi giá trị của x
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến.
a) x2 - 5x +10
b) 2x2 + 8x +15
c) (x-1).(x-2) + 5
d) (x+5).(x-3) + 20
Mọi người giúp mình với :<
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Ai giải giúp mình bài này với (trình bày ra hộ mình nhé)
Chứng minh rằng biểu thức \(M=x^8-x^7+x^5-x^3+1\)luôn dương
chứng minh rằng biểu thức
a)x^2+2x+3 luôn dương với mọi x
b)-x^2+4x-5 luôn âm với mọi x
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
a.x2+ 2x+ 3
=x2+ 2.x.1+ 12- 12+ 3
= (x+1)2 -1+3
= (x+1)2+ 2
Ta có: (x+1)2 ≥0
(x+1)2+ 3≥ 3>0
⇒x2+ 2x+ 3>0 mọi x
Vậy x2+ 2x+3>0 mọi x
b. -x2+ 4x- 5
= - (x2- 4x +5)
= - (x2- 2.x.2+ 22- 22+ 5)
= - ((x- 2)2- 4+ 5)
= - ((x- 2)2+1)
= -(x- 2)2 -1
Ta có: (x-2)2 ≥0
- (x-2)2 ≤0
- (x-2)2 +1≤ 1
⇒ -x2+ 4x- 5 <0 mọi x
Vậy -x2+ 4x- 5 <0 mọi x
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự