x+5x2 = 0
tìm x
5x2 - 15x = 0
5x2 - 15x = 0
5x(x-3)=0
suy ra 2 trường hợp
x=0
x-3=0=>x=3
5x2-15x=0
5x(x-3) =0
TH1: 5x=0 TH2: x-3=0
=>x=0 => x=3
Vậy x thuộc {0;3}
x3 – 5x2 – x + 5 = 0
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\\x=5\end{matrix}\right.\)
\(x^3-5x^2-x+5=x^2\left(x-5\right)-\left(x-5\right)=\left(x-5\right)\left(x^2-1\right)=\left(x-5\right)\left(x-1\right)\left(x+1\right)\)
Tìm x:
a) x3 +3x2 - 10x = 0
b) x3 - 5x2 - 14x =0
c) x3 + 5x2- 24x =0
Giải giúp mình với ạ !
Mình cảm ơn !
x3+3x2-10x=0
=>x(3+3.2-10)=0
=>x=0
x3-5x2-14x=0
=>x(3-5.2-14)=0
=>x=0
x3+5x2-24x=0
=>x(3+5.2-24)=0
=>x=0
Câu a)
\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)
\(\Rightarrow x=0;x=5;x=2\)
Câu b:
\(x^3-5x^2-14x=0\Rightarrow x\left(x^2-5x-14\right)=0\Rightarrow x\left(x^2+2x-7x-14\right)=0\Rightarrow x\left(x\left(x+2\right)-7\left(x+2\right)\right)=0\Rightarrow x\left(x-7\right)\left(x+2\right)=0\)
\(\Rightarrow x=0;x=7;x=-2\)
Cho số s.y thỏa mãn đẳng thức: 5x2+5x2+8xy-2x+2y+2=0. tính giá trị của biểu thức M=(x-y)2023-(x-2)2024+(y+1)2023.
Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)
\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)
\(=2^{2023}-1\)
5x2 + 3x + 6 = 0, tìm x
`5x^2 + 3x + 6 = 0`
Đề là như này ạ ? nếu là vậy bạn xem có đúng đề không ạ .
5x2 -15x = 0
3 (x+5)-2x(x+5)=0
\(5x^2-15x=0\Leftrightarrow5x\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ 3\left(x+5\right)-2x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
1) \(5x^2-15x=0\)
\(\Rightarrow5x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
2) \(3\left(x+5\right)-2x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(3-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(5x^2-15x=0\)
\(\Rightarrow x.\left(5x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\5x=15\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy x ∈ {0 ; 3}
\(3.\left(x+5\right)-2x.\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right).\left(3-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\3-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy x ∈ \(\left\{-5;\dfrac{3}{2}\right\}\)
c) Tìm x, biết: x ∈ Z và x 2 - 5 x 2 - 24 < 0
c) x ∈ Z và x 2 - 5 x 2 - 24 < 0
Ta có: x 2 - 5 > 0 ; x 2 - 24 < 0 ⇒ x 2 > 5 ; x 2 < 24 Nên x 2 ∈ 9 ; 16
x 2 = 9 ⇒ x = ± 3 ; x = 16 ⇒ x = ± 4
Vậy x ∈ - 3 ; 3 ; - 4 ; 4
2(x-3)(x2+1)+15x-5x2=0
\(\Leftrightarrow\left(x-3\right)\left(2x^2+2\right)+5x\left(3-x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\)
=>(x-3)(x-2)(2x-1)=0
=>x=3 hoặc x=2 hoặc x=1/2
\(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2+2\right)-5x\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(2x^2-5x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left[\left(2x^2-4x\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left[2x\left(x-2\right)-\left(x-2\right)\right]=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(2\left(x-3\right)\left(x^2+1\right)+15x-5x^2=0\)
\(\Leftrightarrow2x^3+2x-6x^2-6+15x-5x^2=0\)
\(\Leftrightarrow2x^3-11x^2+17x-6=0\)
\(\Leftrightarrow2x^3-4x^2-7x^2+14x+3x-6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-7x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-7x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-6x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-1\right)-3\left(2x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{2};3\right\}\)
a) 5x2–x+m≤0;
b)
nha
Cấm cop mạng
y + 5x2 - ( 32 + 16 x 3 : 6 - 15 ) = 0
\(y+5x2-\left(32+16x3:6-15\right)=0\)
\(y+10-\left(32+8-15\right)=0\)
\(y+10-\left(40-15\right)=0\)
\(y+10-25=0\)
\(y=25-10\)
\(y=15\)