\(\left|x+1\right|+\left|x+2\right|+....+\left|x+101\right|=2024x\)
5. Tìm x biết:
a, \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+10\right|=11x+1\)
b, \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+\left|x+\dfrac{3}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=101x\)
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+.....+\left|x+\dfrac{100}{101}\right|=101x\left(1\right)\)
VT(1) \(\ge0\) \(\Rightarrow VP\left(1\right)\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=100x+\dfrac{5050}{101}=101x\\ \Rightarrow x=50\)
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\) \(\forall x\)
\(\left|x+\frac{2}{101}\right|\ge0\) \(\forall x\)
\(\left|x+\frac{3}{101}\right|\ge0\) \(\forall x\)
\(............\)
\(\left|x+\frac{100}{101}\right|\ge0\) ∀\(x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\) \(\forall x\)
\(\Leftrightarrow101x\ge0\)
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)\)
\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 hạng tử x 100 số hạng
\(\Leftrightarrow100x+\left(\frac{\left(100+1\right)\cdot100:2}{101}\right)=101x\)
\(\Leftrightarrow100x+\frac{101\cdot50}{101}=101x\)
\(\Leftrightarrow50=101x-100x\)
\(\Rightarrow x=50\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x
Tĩm X?
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
và \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
Thay vào đề bài ta đc:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)
\(\Rightarrow100x+101=101x\)
\(\Rightarrow x=101\)
Vậy \(x=101.\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)
điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0
từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x
\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x
\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x
\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x
\(\Rightarrow\) x=50
k bt mk lm sai hay lm đúng nữa
nếu mk lm sai thì thôi nha!
\(!x+\frac{1}{101}!+!x+\frac{2}{101}!+...+!x+\frac{100}{101}!=101x\) (1)
VT tổng các số không âm => VT>=0 vậy \(VP\ge0\Rightarrow x\ge0\)
với x>=0 biểu thức trong GT tuyệt đối >0 => bỏ dấu trị tuyệt đối biểu thức không đối
do vậy ta có (1) \(\Leftrightarrow\left(x+\frac{1}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow100.x+\left(\frac{1}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}=\frac{1}{101}\left(1+2+...+100\right)=\frac{1}{101}\left(\frac{100.101}{2}\right)=50\)
đáp số: x=50
Câu 1: Tìm x biết:
a)\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
b)\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)
c)\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
d)\(\left|x+\frac{1}{1.5}\right|+\left|x+\frac{1}{5.9}\right|+\left|x+\frac{1}{9.13}\right|+...+\left|x+\frac{1}{397.401}\right|=101x\)
Nhận xét :
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
b)
Tương tự câu a) , phương trình tương đương với :
\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)
\(\Rightarrow x=\frac{97}{195}\)
c)
Tương tự câu a) , phương trình tương đương với :
\(99x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)
\(\Rightarrow x=\frac{99}{100}\)
Giá trị của x thỏa mãn đẳng thức
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=100x\)
Tìm \(x\in Q\) sao cho:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{1}{102}\right|+....+\left|x+\frac{100}{101}\right|>0\)
\(\Rightarrow101x>0\)
\(\Rightarrow x>0\)
\(\Rightarrow\left(x+\frac{1}{101}\right)+.....+\left(x+\frac{100}{101}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow x=\frac{\left(100+1\right)100:2}{101}\)
\(\Rightarrow x=\frac{50.101}{101}\)
\(\Rightarrow x=50\)
Vậy x = 50
Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
=> \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x 100 phân số
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
tìm x biết: \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(100x+\frac{1+2+...+100}{101}=101x\)
\(101x-100x=\frac{5050}{101}\)
\(x=50\)
Vậy x = 50
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
\(KĐ:101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)
\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)
\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)
\(x=\frac{101.100:2}{101}\)
\(x=50\)
tìm x biết: \(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+....+\left|x+\dfrac{100}{101}\right|=101x\)
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+\left|x+\dfrac{3}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=101x\)
Ta có : \(\left\{{}\begin{matrix}\left|x+\dfrac{1}{101}\right|\ge0\\\left|x+\dfrac{1}{102}\right|\ge0\\....\\\left|x+\dfrac{100}{101}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+\left|x+\dfrac{3}{101}\right|+...+\left|x+\dfrac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{1}{101}\right|=x+\dfrac{1}{101}\\\left|x+\dfrac{2}{101}\right|=x+\dfrac{2}{101}\\....\\\left|x+\dfrac{100}{101}\right|=x+\dfrac{100}{101}\end{matrix}\right.\)
\(\Rightarrow x+\dfrac{1}{101}+x+\dfrac{2}{101}+x+\dfrac{3}{101}+...+x+\dfrac{100}{101}=101x\)
\(\Rightarrow100x+\dfrac{1+2+3+...+100}{101}=101x\)
\(\Rightarrow100x+\dfrac{5050}{101}=101x\)
\(\Rightarrow100x+50=101x\)
\(\Rightarrow101x-100x=50\)
\(\Rightarrow x=50\)
Vậy \(x=50\)
Tìm x biết,
a) \(\left(x^2-1\right)\left(x-101\right)+101x\left(x+1\right)=101\)
b) \(x^4-3x^2\left(2x-3\right)=0\)
a) ( x2 - 1 )( x - 101 ) + 101x( x + 1 ) = 101
<=> x3 - 101x2 - x + 101 + 101x2 + 101x - 101 = 0
<=> x3 + 100x = 0
<=> x( x2 + 100 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2+100=0\end{cases}}\Leftrightarrow x=0\)( vì x2 + 100 ≥ 100 > 0 ∀ x )
b) x4 - 3x2( 2x - 3 ) = 0
<=> x4 - 6x3 + 9x2 = 0
<=> x2( x2 - 6x + 9 ) = 0
<=> x2( x - 3 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
a,\(\left(x^2-1\right)\left(x-101\right)+101x\left(x+1\right)=101\)
\(\Leftrightarrow x^3-101x^2-x+101+101x^2+101x=101\)
\(\Leftrightarrow x^3+100x=101-101\)
\(\Leftrightarrow x^3+101x=0\)
\(\Leftrightarrow x\left(x^2+101\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+101\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-101\end{cases}\Rightarrow}x=0}\)