Chứng minh
( 2,57+3,56+4,55) chia hết cho 69
a)
Ta có :
106 + 57
= (2 x 5)6 + 57
= 26 x 56 + 57
= 26 x 56 + 56 x 5
= 56 x (26 + 5)
= 56 x 69
Vì 69 ⋮ 69 => 56 ⋮ 69 => 106 + 57 ⋮ 69
b)
Ta có :
220 - 217
= 217 x 23 - 217 x 1
= 217 x (23 - 1)
= 217 x 7
Vì 7 ⋮ 7 => 217 x 7 ⋮ 7 => 220 - 217 ⋮ 7
k nha bn !!!
Chứng minh rằng: 69^2-69*5 chia hết cho 32
692 - 69.5 = 69.(69 - 5) = 69.64 = 69.2.32 chia hết cho 32
Chứng minh chia hết :
a, \(328^3+172^3\) chia hết cho 2000
b, \(69^2-69.5\) chia hết cho 32
c, \(19^{19}+69^{19}\) chia hết cho 44
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)
đồng dư thức: chứng minh
220^119^69 +119^69^220 +69^ 220^19 chia hết cho 102
giúp mình với, cảm ơn mọi người
220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )
119 ≡ −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )
69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )
119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )
69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )
Suy ra A ⋮ 17 (2)
Lại có A là số chẵn (Vì \(69^{220^{119}}\), \(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)
Suy ra: A ⋮ 2 (3)
Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102
Cho B=1+4+4^2+4^3+......+4^68
a)Chứng minh:B chia hết cho 21
b)Chứng minh:B không chia hết cho 5
c)Chứng minh : (4^69-1) chia hết cho 3
\(B=\left(1+4+4^2\right)+...+\left(4^{66}+4^{67}+4^{68}\right)=21.1+...+21.4^{66}\)
\(B=21.\left(1+...+4^{66}\right)\)
Vậy tổng chia hết cho 21
Chứng minh rằng:
( 69 2 + 69 x 5 ) chia hết cho 32.
( 87 - 218 ) chia hết cho 14.
CHỨNG MINH .................... CHIA HẾT CHO 32 :
692-69.5=69.(69.5)
=69.64=69.2.32 CHIA HẾT CHO 32 (DPCM)
CHỨNG MINH .............. CHIA HẾT CHO 14:
(817-218)=8(218)-218=7.218=14.217
=> DPCM
chứng minh rằng 19^19+69^69 chia hết cho 44
các bạn giải chi tiết giúp mình nhé!!!
Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
Ta có : 1919+6919
= ( 19 + 69 ) ( 1918- 1917.69 + .... + 6919)
= 88 . ( 1918- 1917.69 + .... + 6919)
= 44 . 2 . ( 1918- 1917.69 + .... + 6919) chia hết cho 44
Vậy 1919 + 6919 chia hết cho 44
học tốt
Hãy chứng minh : 692 - 69 . 5 chia hết cho 32.
Nhanh nhé, mks sẽ tick
69^2-69.5 = 69.(69-5) = 69.64 = 2.69.32 chia hết cho 32
k mk nha
692 - 69.5
= 69.69 - 69.5
= 69. ( 69-5)
= 69. 64
= 69. 2.32 => Chia hết cho 32. Hem biết đúng hem.
ta có : \(69^2-69.5\)= \(69\left(69-5\right)\) = \(69.64\) = \(69.2.32\) \(⋮\) 32
vậy \(69^2-69.5\) \(⋮\) 32
Chứng minh rằng
A. 8^5+2^11 chia hết cho 17
B.19^19+69^19 chia hết cho 44
a)Đặt \(A=8^5+2^{11}\)
\(A=\left(2^3\right)^5+2^{11}\)
\(A=2^{15}+2^{11}\)
\(A=2^{11}\left(2^4+1\right)\)
\(A=2^{11}\cdot17⋮17\left(đpcm\right)\)
chứng minh rằng : \(A=220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\) chia hết cho 102
220 đồng dư với 2(mod 2)
=>\(220^{119^{69}}\)đồng dư với 0(mod 2)
119 đồng dư với 1(mod 2)
=>\(119^{69^{220}}\)đồng dư với 1(mod 2)
69 đồng dư với 1(mod 2)
=>\(69^{220^{119}}\)đồng dư với 1(mod 2)
=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2
220 đồng dư với 1(mod 3)
=>\(220^{119^{69}}\)đồng dư với 1(mod 3)
119 đồng dư với -1(mod 3)
=>\(119^{69^{220}}\)đồng dư với -1(mod 3)
69 đồng dư với 0(mod 3)
=>\(69^{220^{119}}\)đồng dư với 0(mod 3)
=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3
220 đồng dư với -1(mod 17)
=>\(220^{119^{69}}\)đồng dư với -1(mod 17)
119 đồng dư với 0(mod 17)
=>\(119^{69^{220}}\)đồng dư với 0(mod 17)
69 đồng dư với 1(mod 17)
=>\(69^{220^{119}}\)đồng dư với 1(mod 17)
=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17
vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102
=>đpcm