Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Lung Hoa
Xem chi tiết
Bui Thu Phuong
Xem chi tiết
ngo thu trang
Xem chi tiết
Vọng Vọng
Xem chi tiết
Hồ Quang Hưng
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2022 lúc 19:53

\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)

\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)

\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)

b.

Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)

\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)

ngo thu trang
Xem chi tiết
Nguyen Ha Vi
Xem chi tiết
Hoàng Phúc
10 tháng 6 2016 lúc 14:11

Từ \(x=\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c=\frac{1}{2}.\left(a+b+c\right)\Rightarrow2x=a+b+c\)

\(M=\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)

\(=x^2-xb-ax+ab+x^2-xc-bx+bc+x^2-ax-cx+ac+x^2\)

\(=4x^2-2ax-2bx-2cx+ab+bc+ac\)

\(=4x^2-2x\left(a+b+c\right)+ab+bc+ca\)

Thay 2x=a+b+c,ta đc:

\(M=4x^2-2x.2x+ab+bc+ca=4x^2-4x^2+ab+bc+ca=ab+bc+ca\)

lilla
Xem chi tiết
missing you =
15 tháng 7 2021 lúc 20:16

B1

a, \(=>A=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x.2y=4xy\)

b, \(=>B=\left[\left(x+y\right)-\left(x-y\right)\right]^2=\left[x+y-x+y\right]^2=\left[2y\right]^2=4y^2\)

c,\(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\)\(\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^3+1^3\right)\left(x^3-1^3\right)=x^6-1\)

d, \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\)

\(+\left(a-b+c+b-c\right)\left(a-b+c-b+c\right)\)

\(=a\left(a+2b-2c\right)+a\left(a-2b\right)\)

\(=a\left(a+2b-2c+a-2b\right)=a\left(2a-2c\right)=2a^2-2ac\)

B2:

\(\)\(x+y=3=>\left(x+y\right)^2=9=>x^2+2xy+y^2=9\)

\(=>xy=\dfrac{9-\left(x^2+y^2\right)}{2}=\dfrac{9-\left(17\right)}{2}=-4\)

\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(17+4\right)=63\)

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 23:04

Bài 1: 

a) Ta có: \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=x^2+2xy+y^2-x^2+2xy+y^2\)

=4xy

b) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)^2\)

\(=\left(2y\right)^2=4y^2\)

c) Ta có: \(\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^6-1\)

d) Ta có: \(\left(a+b-c\right)^2+\left(a+b+c\right)^2-2\left(b-c\right)^2\)

\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a+b+c\right)^2-\left(b-c\right)^2\)

\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)+\left(a+b+c-b+c\right)\left(a+b+c+b-c\right)\)

\(=a\cdot\left(a+2b-2c\right)+\left(a+2c\right)\left(a-2b\right)\)

\(=a^2+2ab-2ac+a^2-2ab+2ac-4bc\)

\(=2a^2-4bc\)

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 23:05

Bài 2: 

Ta có: x+y=3

nên \(\left(x+y\right)^2=9\)

\(\Leftrightarrow2xy+17=9\)

\(\Leftrightarrow2xy=-8\)

hay xy=-4

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=3^3-3\cdot\left(-4\right)\cdot3\)

\(=27+36=63\)

nguyễn bảo ngọc
Xem chi tiết