y=cos 2/3-x
3. Tìm GTLN, GTNN:
a) \(y=2\sin^2x+3\sin x\cos x-2\cos^2x+5\)
b) \(y=\dfrac{3\sin x-\cos x+1}{\sin x-2\cos x+4}\)
c) \(y=\dfrac{2\left(x^2+6xy\right)}{1+2xy+y^2}\) biết x, y thay đổi thỏa mãn \(x^2+y^2=1\)
a.
\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)
\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))
\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)
b.
\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)
\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)
\(\Leftrightarrow11y^2+2y-9\le0\)
\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)
c.
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)
\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)
\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)
Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:
\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)
\(\Leftrightarrow y^2+8y-36\le0\)
\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)
Tìm GTLN, GTNN:
a, \(y=\sin x+\cos x\).
b, \(y=\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x+3\).
c, \(y=\sqrt{3}\sin2x-\cos2x\).
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc vào x :
a) \(y=\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
b) \(y=\cos^2\left(\dfrac{\pi}{3}-x\right)+\cos^2\left(\dfrac{\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3x}-x\right)+\cos^2\left(\dfrac{2\pi}{3x}+x\right)-2\sin^2x\)
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
Tìm GTLN - GTNN
1. \(y=S\times\left(1-\frac{S^2-1}{2}\right)\)
2. \(y=\sin^4x+\cos^4x\)
3.\(y=\sin^6+\cos^6\)
4.\(y=\frac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)
Câu 1:
\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)
Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)
Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)
Hàm số không có GTLN và GTNN
Câu 2:
\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)
\(y=1-\frac{1}{2}sin^22x\)
Do \(0\le sin^22x\le1\)
\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)
\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)
Câu 3:
\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)
\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)
\(y=1-\frac{3}{4}sin^22x\)
Do \(0\le sin^22x\le1\)
\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)
\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)
Câu 4:
\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)
\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)
\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)
\(\Leftrightarrow11y^2-24y+4\le0\)
\(\Leftrightarrow\frac{2}{11}\le y\le2\)
Tìm GTLN - GTNN
1 . \(y=S\times\left(1-\frac{S^2-1}{2}\right)\)
2. \(y=\sin^4x+\cos^4x\)
3.\(y=\sin^6+\cos^6\)
4.\(y=\frac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)
\(y=\dfrac{1}{\left(x^2-2x+5\right)^2}\)
y=2sin3xcos5x
\(y=\left(1+\sqrt{1-2x}\right)^3\)
\(y=x^2\sin\left(3x-1\right)\)
\(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
Tìm GTLN, GTNN:
a, \(y=4\sin^2x-4\sin x+3\).
b, \(y=\cos^2x+2\sin x+2\).
c, \(y=\sin^4x-2\cos^2x+1\).
a.
Tìm min:
$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$
Vậy $y_{\min}=2$
----------------
Mặt khác:
$y=4\sin x(\sin x+1)-8(\sin x+1)+11$
$=(\sin x+1)(4\sin x-8)+11$
$=4(\sin x+1)(\sin x-2)+11$
Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$
$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$
$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$
Vậy $y_{\max}=11$
b.
$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$
$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$
Vậy $y_{\max}=4$.
---------------------------
Mặt khác:
$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$
$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$
$=(1+\sin x)(3-\sin x)$
Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$
$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$
Vậy $y_{\min}=0$
c.
$y=\sin ^4x-2\cos ^2x+1=\sin ^4x-2(1-\sin ^2x)+1$
$=\sin ^4x+2\sin ^2x-1$
$=(\sin ^4x-1)+(2\sin ^2x-2)+2$
$=(\sin ^2x-1)(\sin ^2x+1)+2(\sin ^2x-1)+2$
$=(\sin ^2x-1)(\sin ^2x+3)+2$
Vì $\sin x\in [-1;1]$ nên $\sin ^2x\leq 1$
$\Rightarrow (\sin ^2x-1)(\sin ^2x+3)\leq 0$
$\Rightarrow y=(\sin ^2x-1)(\sin ^2x+3)+2\leq 2$
Vậy $y_{\max}=2$
------------------------------------------
$y=\sin ^4x+2\sin ^2x-1=\sin ^2x(\sin ^2x+2)-1$
Vì $\sin ^2x\geq 0$ nên $\sin ^2x(\sin ^2x+2)\geq 0$
$\Rightarrow y=\sin ^2x(\sin ^2x+2)-1\geq 0-1=-1$
Vậy $y_{\min}=-1$
Tìm đạo hàm của các hàm số sau :
a) \(y=2\sqrt{x}\sin x-\dfrac{\cos x}{x}\)
b) \(y=\dfrac{3\cos x}{2x+1}\)
c) \(y=\dfrac{t^2+2\cos t}{\sin t}\)
d) \(y=\dfrac{2\cos\varphi-\sin\varphi}{3\sin\varphi+\cos\varphi}\)
e) \(y=\dfrac{\tan x}{\sin x+2}\)
f) \(y=\dfrac{\cot x}{2\sqrt{x}-1}\)
tìm GTLN và GTNN
1.y=\(3\sin^2x-2\)
2.y=\(2\sin^3x+\sin x\)
3.y=\(\cos^2x-2\sin x\)
4.y=\(\sin^2x+\cos^4x\)
5.y=\(\sin^4x+\cos^4x+\sin x\times\cos x\)