Rút gọn
a)\(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\) (với \(\dfrac{1}{4}\le x\le\dfrac{1}{2}\)
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
Cho biểu thức B= \(\sqrt{4x-2\sqrt{4x-1}}\)\(+\sqrt{4x+2\sqrt{4x-1}}\)\(với\dfrac{1}{4}\le x\le\dfrac{1}{2}\)
Rút gọn :
a) \(\sqrt{2x-\sqrt{4x-1}}-\sqrt{2x+\sqrt{4x-1}}\) (với \(\frac{1}{4}\le x\le\frac{1}{2}\)
b)\(\frac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\frac{1}{\sqrt{x-1}}\right)\)
Rút gọn:
\(A=\dfrac{2}{x-1}\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(B=\left(x^2-4\right)\sqrt{\dfrac{9}{x^2-4x+4}}\)
\(A=\dfrac{2}{x-1}\sqrt{\dfrac{\left(x-1\right)^2}{4x^2}}=\dfrac{2}{x-1}\left|\dfrac{x-1}{2x}\right|=\dfrac{\left|x-1\right|}{\left(x-1\right)\left|x\right|}\)
\(B=\left(x^2-4\right)\sqrt{\dfrac{9}{x^2-4x+4}}=\dfrac{3\left(x^2-4\right)}{\left|x-2\right|}\)
a) Ta có: \(A=\dfrac{2}{x-1}\cdot\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(=\dfrac{2}{x-1}\cdot\dfrac{x-1}{2x}\)
\(=\dfrac{1}{x}\)
b) Ta có: \(\left(x^2-4\right)\cdot\sqrt{\dfrac{9}{x^2-4x+4}}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)\cdot3}{\left(x-2\right)^2}\)
\(=\dfrac{3x+6}{x-2}\)
tìm GTLN A=\(3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với \(\dfrac{1}{2}\le x\le\dfrac{\sqrt{5}}{2}\)
Rút gọn các biểu thức sau:
a. x+3+ \(\sqrt{x^2-6x+9}\) (x ≤ 3)
b. \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) ( -2 ≤ x ≤ 0 )
c. \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) ( x > 1)
d. /x-2/ + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) ( x < 2)
\(a.x+3+\sqrt{x^2-6x+9}=x+3+\text{ |}x-3\text{ |}=x+3+3-x=6\) \(b.\sqrt{x^2+4x+4}-\sqrt{x^2}=\text{ |}x+2\text{ |}-\text{ |}x\text{ |}=x+2-\left(-x\right)=x+2+x=2x+2\) \(c.\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{x-1}{x-1}=1\)
\(d.\text{ |}x-2\text{ |}+\dfrac{\sqrt{x^2-4x+4}}{x-2}=\text{ |}x-2\text{ |}+\dfrac{\text{ |}x-2\text{ |}}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)
Rút gọn biểu thức:
\(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\) với \(0\le x\ne1\)
Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)
\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+\sqrt{x}+1\right)}{\left(x-1\right)\left(x-\sqrt{x}+1\right)}\)
Rút gọn biêu thức:
\(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\) với \(0\le x\ne1\)
Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)
\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)\cdot\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)
Rút gọn các biểu thức sau:
A = \(\dfrac{3}{2\left(2x-1\right)}\sqrt{8\left(4x^2-2x+1\right)x^4}\)
B = \(\dfrac{a-b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2-2ab+b^2}}\)
\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)
\(=\pm3\sqrt{2}x^2\)
\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)
\(=\pm\left|a\right|\)