\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}\)
Tính a, b, c
tính GTBT:
a)a.\(\left(\dfrac{-3}{2}\right)+a.\dfrac{1}{4}-a.\dfrac{5}{6}vớia=\dfrac{3}{5}\)
b)\(\dfrac{2}{5}.b-\dfrac{1}{3}.b+b.\left(\dfrac{-1}{2}\right)vớib=\dfrac{6}{13}\)
c)c.\(\dfrac{5}{6}+\dfrac{3}{4}.c-\dfrac{11}{12}.c\) với c=\(\dfrac{2019}{2020}\)
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2
a=2.3=6 ; b=2.4=8 ;c=2.5=10
M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188
"nhưng bài còn lại làm tương tự"
Cho a,b,c thỏa mãn: \(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}\)
Tính M = 10a+b-7c+2021
Cho a,b,c > 0
Chứng minh rằng: \(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\)
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)
\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)
Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)
\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)
\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
\(\Rightarrow dpcm\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)
\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(
1.Tính
\(a,5\text{x}\dfrac{7}{3}\) \(b,\dfrac{13}{4}:7\)
2.Tính
\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\) \(b,\dfrac{9}{7}-\dfrac{5}{11}\text{x}\dfrac{11}{7}\) \(c,\dfrac{3}{5}\text{x}\dfrac{5}{7}\text{+}\dfrac{4}{7}\) \(d,\dfrac{7}{9}\text{x}\dfrac{2}{5}:\dfrac{3}{11}\) e,\(\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)
g,\(\dfrac{4}{9}:\dfrac{3}{5}\text{x}\dfrac{2}{11}\) h,\(\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)
\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)
\(\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}=\dfrac{60}{140}+\dfrac{56}{140}+\dfrac{105}{140}=\dfrac{221}{140}\)
\(\dfrac{9}{7}-\dfrac{5}{11}x\dfrac{11}{7}=\dfrac{9}{7}-\dfrac{5}{7}=\dfrac{4}{7}\)
Tính giá trị các biểu thức sau :
\(A=a.\dfrac{1}{2}+a.\dfrac{1}{3}-a.\dfrac{1}{4}\) với \(a=\dfrac{-4}{5}\)
\(B=\dfrac{3}{4}.b+\dfrac{4}{3}.b-\dfrac{1}{2}.b\) với \(b=\dfrac{6}{19}\)
\(C=c.\dfrac{3}{4}+c.\dfrac{5}{6}-c.\dfrac{19}{12}\) với \(c=\dfrac{2002}{2003}\)
Áp dụng tính chất phân phối, rồi tính giá trị biểu thức.
Chẳng hạn,
Với , thì
ĐS. ; C = 0.
Xem thêm tại: http://loigiaihay.com/bai-77-trang-39-phan-so-hoc-sgk-toan-6-tap-2-c41a5943.html#ixzz4eU1fQCGw
Lời giải
Gợi ý: Sử dụng tính chất phân phối của phép nhân đối với phép cộng để nhóm các thừa số chung a; b; c ra ngoài, sau đó tính phép tính trong ngoặc rồi thay giá trị a; b; c đã cho vào.
Mn giúp em ạ!
TÍNH:
a, A = \(\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)\)
b, B = \(2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)\)
c, C = \(\left(\dfrac{3}{4}-0,2\right).\left(0,4-\dfrac{4}{5}\right)\)
a) \(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
b) \(B=2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)=\dfrac{25}{11}.\dfrac{13}{12}.\dfrac{-11}{5}=-\dfrac{65}{12}\)
c) \(C=\left(\dfrac{3}{4}-0,2\right)\left(0,4-\dfrac{4}{5}\right)=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\left(\dfrac{-2}{5}\right)=\dfrac{-11}{50}\)
A = 2/3 + -1/3
= 1/3
B = 25/11 . 13/12 . (-2,2)
= 325/132 . (-2,2)
= -65/12
C = 11/20 . -2/5
= -11/50
Chúc bạn học tốt!! ^^
= -
a, A = \(\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)\)
=\(\dfrac{2}{3}+\dfrac{-1}{3}\)
=\(\dfrac{1}{3}\)
b, B = \(2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)\)
= \(\dfrac{23}{11}.\dfrac{13}{12}.\dfrac{-11}{5}\)
= \(\dfrac{23.13.\left(-11\right)}{11.12.5}\)
= \(\dfrac{-299}{60}\)
c, C =\(\left(\dfrac{3}{4}-0,2\right)\)\(.\left(0,4\right)-\dfrac{4}{5}\)
= \(\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\)\(.\dfrac{2}{5}-\dfrac{4}{5}\)
= \(\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)\(.\dfrac{-2}{5}\)
= \(\dfrac{1}{4}.\dfrac{-2}{5}\)
= \(\dfrac{-2}{20}=\dfrac{-1}{10}\)
Chúc bạn học tốt!
Tìm a, b, c, biết
a) \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b+3c=14\)
b) \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\) và \(a+b+c=49\)
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Bài 1 : Tính
a) A = \(\left(\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{7}{12}\right):\left(\dfrac{55}{123}+\dfrac{555}{1234}+\dfrac{5555}{12345}\right)\)
b) B = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{101.106}\)
c) C = \(\dfrac{2x^2+3x-1}{3x-2}\) với \(\left|x-1\right|=2\)
a, bạn tự làm
b, \(B=\dfrac{5^2}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(=5\left(1-\dfrac{1}{106}\right)=\dfrac{5.105}{106}=\dfrac{525}{106}\)
c, đk : \(x\ne\dfrac{2}{3}\)
Ta có : \(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)(tm)
Với x = 3 suy ra \(C=\dfrac{2.9+9-1}{3.3-2}=\dfrac{26}{7}\)
Với x = -1 suy ra \(C=\dfrac{2-3-1}{-3-2}=\dfrac{-2}{-5}=\dfrac{2}{5}\)