Hình vuông ABCD, M thuộc CD. Vẽ phân giác góc ABM tia này cắt AD ở N. Chứng minh AN + CM = BM
cho hình vuông ABCD. M thuộc CD. vẽ tia phân giác góc ABM cắt AD tại N. cm AN+CM= BM
Cho hình vuông ABCD nhất định M là 1 điểm lấy trên cạnh BC tia AM cắt DC tại P trên tia đối tia DC lấy điểm N sao cho DN=BM
Chứng minh tam giác AND=ABM và tam giác MAN vuông cân
Chứng minh tam giác ABM và tam giác PAD đồng dạng và BC^2=BM.DP
Qua A vẽ đường thẳng vuông góc với MN tại H và cắt CD tại Q ,MN cắt AD ở I chứng minh AH.AQ=AI.AD và góc DAQ=HMQ
Chứng minh tam giác NDH đồng dạng NIQ
Hình vuông ABCD, M thuộc CD. Vẽ phân giác góc ABM, tia này cắt AD ở N. C/m AN+CM=BM
cho điểm M thuộc cạnh CD của hình vuông ABCD. Tia phân giác góc ABM cắt AD ở I. CMR BI < 2MI
Trên tia đối của tia CD em lấy điểm J sao cho CJ = AI. Qua M vẽ đường thẳng song song với BI cắt BJ tại N
Dễ cm tam giác vuông ABI = tam giác vuông CBJ => BI = BJ
Mặt khác dễ cm BI _|_ BJ => MN _|_ BJ
Và => MBJ = 900 - MBI => 900 - ABI = 900- CBJ = MJB => tam giác MBJ cân tại M => N là trung điểm của BJ
Ta có MI >= BN = BJ/2 = BI/2 ( vì BIMN là hình thang vuông tại B và N) ( đpcm)
Hay BI =< 2MI (đpcm)
cho điểm M thuộc cạnh CD của hình vuông ABCD. Tia phân giác góc ABM cắt AD ở I. CMR BI < 2MI
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại M. N là hình chiếu của M trên BC.
a) Chứng minh tam giác ABM = tam giác NBM và MB là tia phân giác góc AMN.
b) Vẽ NK//BM (K thuộc MC). Chứng minh góc BMN = góc MNK và tam giác MNK cân.
c) Chứng minh BM vuông góc AN và AN<AK
d) Tam giác vuông ABC cần thêm điều kiện gì để K là trung điểm của MC
Nhờ các cao nhân giải giúp bài này. Thank all!
Bạn tự vẽ hình nhé.
a) Xét tam giác \(ABM\)và tam giác \(NBM\)có:
\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)
\(MB\)cạnh chung
\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))
suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng)
suy ra \(MB\)là tia phân giác góc \(AMN\).
b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong)
và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị)
mà \(\widehat{AMB}=\widehat{NMB}\)(theo a))
suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).
c) Vì \(\Delta ABM=\Delta NBM\)nên
+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).
+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).
suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).
mà \(NK//BM\)suy ra \(AN\perp NK\).
Trong tam giác vuông \(ANK\): \(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).
d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))
suy ra \(MN=\frac{1}{2}MC\).
Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).
Do đó \(\widehat{C}=30^o\).
Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).
Cho góc xAy vuông tại A, Az là tia phân giác của xAy.C thuộc Az. Vẽ CB vuông góc với Ax tại B. CD vuông góc với Ay tại D. M thuộc cạnh AD. Từ B kẻ tia cắt cạnh DC tại I sao cho góc ABM= góc MBI. Tia phân giác của góc IBC cắt DC tại N. Chứng minh MN vuông góc với BC
Cho tam giác ABC vuông tại A , vẽ tia phân giác BM của góc B ( M thuộc AC ) . Trên BC xác định điểm N sao cho BA = BN
a , CMR tam giác ABM = tam giác NBM
b, AN cắt BM tại H . CMR HA=HN
c, Từ C kẻ tia Cy vuông góc với tia BM tại k.chứng minh CK // HN.
vẽ hình giúp mình luôn nha=))
a: Xét ΔBAM và ΔBNM có
BA=BN
\(\widehat{ABM}=\widehat{NBM}\)
BM chung
Do đó: ΔBAM=ΔBNM
b: Ta có: ΔBAM=ΔBNM
=>MA=MN
=>M nằm trên đường trung trực của AN(1)
ta có: BA=BN
=>B nằm trên đường trung trực của AN(2)
Từ (1) và (2) suy ra BM là đường trung trực của AN
=>BM\(\perp\)AN tại H và H là trung điểm của AN
vì H là trung điểm của AN
nên HA=HN
c: Ta có: CK\(\perp\)BM
HN\(\perp\)BM
Do đó: CK//HN
Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh AK + CE = BE.
tham khảo
Trên tia đối tia CD lấy điểm M sao cho CM = AK
Ta có: AK + CE = CM + CE = EM (*)
Xét ∆ ABK và ∆ CBM:
AB = CB (gt)
ˆA=ˆC=900
AK = CM (theo cách vẽ)
Do đó: ∆ ABK = ∆ CBM (c.g.c)
⇒ˆB1=ˆB4
(1)
ˆKBC=900–ˆB1
(2)
Trong tam giác CBM vuông tại C.
ˆM=900–ˆB4
(3)
Từ (1), (2) và (3) suy ra: ˆKBC=ˆM
(4)
ˆKBC=ˆB2+ˆB3
mà ˆB1=ˆB2
(gt)
ˆB1=ˆB4
(chứng minh trên)
Suy ra: ˆB2=ˆB4⇒ˆB2+ˆB3=ˆB3+ˆB4
hay ˆKBC=ˆEBM
(5)
Từ (4) và (5) suy ra: ˆEBM=ˆM
⇒ ∆ EBM cân tại E ⇒ EM = BE (**)
Từ (*) và (**) suy ra: AK + CE = BE