bài 6 Gtnn
B=x^2-4x+5
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0 Bài 2: Tìm GTNN : A= x^2 -2x -4 B= x^2 -x +5 C= 4x^2 +2x -9 D= 2x^2 -4x +7
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0
Bài 2: Tìm GTNN :
A= x^2 -2x -4
B= x^2 -x +5
C= 4x^2 +2x -9
D= 2x^2 -4x +7
Giúp tớ với, tớ đang cần gấp
Bài 6:Tìm GTLN,GTNN (nếu có) trong các biểu thức sau:
a)A=-4-x^2+6x
b)B=3x^2-5x+7
c)C=/x-3/(2-/x-3/)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0
Bài 2: Tìm GTNN :
A= x^2 -2x -4
B= x^2 -x +5
C= 4x^2 +2x -9
D= 2x^2 -4x +7
Giúp tớ với, tớ đang cần gấp
Bài 2: Tìm GTNN :
A= x^2 -2x -4 = x^2 - 2x + 1-1 -4 = (x-1)^2 - 5
A >/ -5
MinA = -5
B= x^2 -x +5= x^2 - x + 1/4 - 1/4 +5 = (x-1/2)^2 + 19/4
B >/ 19/4
MinB = 19/4
C= 4x^2 +2x -9= (2x)^2 + 2x + 1/4 - 1/4 -9 = (2x+1/2)^2 - 37/4
C >/ -37/4
MinC= -37/4
\(D=2x^2-4x+7=\left(\sqrt{2}x\right)^2-2\cdot\sqrt{2}x\cdot\sqrt{2}+2-2+7=\left(\sqrt{2}x-\sqrt{2}\right)^2+5\)
D >/ 5
MinD = 5
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn ko làm như vậy
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
\(a)\)
\(A=2x^2+x\)
\(\Leftrightarrow A=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
\(MinA=\frac{-1}{8}\)khi \(x=\frac{-1}{4}\)
\(b)\)
\(B=x^2+2x+y^2-4y+6\)
\(\Leftrightarrow B=x^2+2x+1+y^2-4y+4+1\)
\(\Leftrightarrow B=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu '' = '' xảy ra khi: \(x=-1;y=2\)
\(c)\)
\(C=4x^2+4x+9y^2-6y-5\)
\(\Leftrightarrow C=4x^2+4x+1+9y^2-6y+1-7\)
\(\Leftrightarrow C=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
Dấu '' = '' xáy ra khi: \(x=\frac{-1}{2};y=\frac{1}{3}\)
Tìm GTNN của các biểu thức : a, A= (x-1)(x-3)(x^2-4x+5); b, B= (x^2-x+6)(x^2+x+2); c, C=(x+8)^4+(x+6)^4; Tìm GTNN của biểu thức A= x^2-4x+1 / x^2
Bài 4:
a, Tìm GTLN
\(Q=-x^2-y^2+4x-4y+2\)
b, Tìm GTLN
\(A=-x^2-6x+5\)
\(B=-4x^2-9y^2-4x+6y+3\)
c, TÌm GTNN
\(P=x^2+y^2-2x+6y+12\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3
bài 1:tính GTNN của các biểu thức sau:
a,A=x^2-4x+6
b,B=y^2-y+1
c,C=x^2-4x+y^2-y+5
bài 2: tính GTLN của các biểu thức sau
a,A=-x^2+4x+2
b,B=x-x^2+2
bài 3:chứng tỏ
a,x^2-6x+10>0 với mọi x
b,4y-y^2-5 với mọi y
bài 4:cho biết x+y=15 và xy=-100. Tính giá trị của biểu thức B=x^2+y^2
bài 5:chứng minh đẳng thức (x+y)^2-(x-y)^2=4xy
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
Trả lời:
Bài 1:
a, \(A=x^2-4x+6=x^2-2.x.2+4+2=\left(x-2\right)^2+2\)\(\ge2\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTNN của A = 2 khi x = 2
b, \(B=y^2-y+1=\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall y\)
Dấu "=" xảy ra khi \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\)
Vậy GTNN của B = 3/4 khi x = 1/2
c, \(C=x^2-4x+y^2-y+5=\left(x^2-4x\right)+\left(y^2-y\right)+4+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)\(\ge\frac{3}{4}\forall x;y\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2 và y - 1/2 = 0 <=> y = 1/2
Vậy GTNN của C = 3/4 khi x = 2; y = 1/2
Bài 2:
a, \(A=-x^2+4x+2=-\left(x^2-4x-2\right)=-\left(x^2-2.x.2+4-6\right)=-\left[\left(x-2\right)^2-6\right]\)
\(=-\left(x-2\right)^2+6\le6\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của A = 6 khi x = 2
b, \(B=x-x^2+2=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{9}{4}\le-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTLN của B = - 9/4 khi x = 1/2
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ